We present the first complete two loop calculation of the electron EDM in the complex two-Higgs doublet model. We confirm gauge-independence by demonstrating analytic cancellation of the gauge parameter $xi$ in the background field gauge and the t Hooft $R_xi$ gauge. We also investigate the behavior of the electron EDM near the decoupling limit, and determine the short- and long-distance contributions by matching onto an effective field theory. Compared with earlier studies of the electron EDM in the complex two-Higgs doublet model, we note disagreements in several places and provide diagnoses where possible. We also provide expressions for EDMs of light quarks.
The CP violating two-Higgs doublet model of type-X may enhance significantly the electric and magnetic moment of leptons through two-loop Barr-Zee diagrams. We analyze the general parameter space of the type-X 2HDM consistent with the muon $g-2$ and the electron EDM measurements to show how strongly the CP violating parameter is constrained in the region explaining the muon $ g-2$ anomaly.
We discuss two Higgs doublet models with a softly-broken discrete $mathbb{S}_3$ symmery, where the mass matrix for charged-leptons is predicted as the diagonal form in the weak eigenbasis of lepton fields. Similar to an introduction of $mathbb{Z}_2$ symmetry, the tree level flavor changing neutral current can be forbidden by imposing the $mathbb{S}_3$ symmetry to the model. Under the $mathbb{S}_3$ symmetry, there are four types of Yukawa interactions depending on the $mathbb{S}_3$ charge assignment to right-handed fermions. We find that extra Higgs bosons can be muon and electron specific in one of four types of the Yukawa interaction. This property does not appear in any other two Higgs doublet models with a softly-broken ${mathbb Z}_2$ symmetry. We discuss the phenomenology of the muon and electron specific Higgs bosons at the Large Hadron Collider; namely we evaluate allowed parameter regions from the current Higgs boson search data and discovery potential of such a Higgs boson at the 14 TeV run.
We study the effects of CP violation in charged Higgs boson production $ppto t H^pm + X$ at the LHC, as well as in the charged Higgs boson decays $H^pm to t b$ and $H^pm to W^pm H_i^0$, $i=1,2,3$. The study is done in the framework of the type II complex Two Higgs Doublet Model (2HDM) with softly broken $Z_2$ symmetry. In this model violation of CP invariance is induced by the complex parameter $m^2_{12}$ of the tree-level Higgs potential. We calculate the CP violating rate asymmetries for $H^+$ and $H^-$ production and decays as well as for the combined processes at one-loop level and perform a detailed numerical analysis. All calculations are done with the automatic amplitude generator FeynArts and the calculational tool FormCalc, for which we have written a complete complex 2HDM model file and relevant fortran drivers. The implementation of the complex 2HDM in FeynArts and FormCalc is described. In comparison with the analogous results in the MSSM, all considered CP violating asymmetries are smaller by an order of magnitude and do not exceed 2 to 3%.
A novel model embedding the two Higgs doublets in the popular two Higgs doublet models into a doublet of a non-abelian gauge group $SU(2)_H$ is presented. The Standard Model $SU(2)_L$ right-handed fermion singlets are paired up with new heavy fermions to form $SU(2)_H$ doublets, while $SU(2)_L$ left-handed fermion doublets are singlets under $SU(2)_H$. Distinctive features of this anomaly-free model are: (1) Electroweak symmetry breaking is induced from spontaneous symmetry breaking of $SU(2)_H$ via its triplet vacuum expectation value; (2) One of the Higgs doublet can be inert, with its neutral component being a dark matter candidate as protected by the $SU(2)_H$ gauge symmetry instead of a discrete $Z_2$ symmetry in the usual case; (3) Unlike Left-Right Symmetric Models, the complex gauge fields $(W_1^{prime}mp i W_2^{prime})$ (along with other complex scalar fields) associated with the $SU(2)_H$ do {it not} carry electric charges, while the third component $W^{prime}_3$ can mix with the hypercharge $U(1)_Y$ gauge field and the third component of $SU(2)_L$; (4) Absence of tree level flavour changing neutral current is guaranteed by gauge symmetry; and {it etc}. In this work, we concentrate on the mass spectra of scalar and gauge bosons in the model. Constraints from previous $Z^prime$ data at LEP and the Large Hadron Collider measurements of the Standard Model Higgs mass, its partial widths of $gammagamma$ and $Zgamma$ modes are discussed.
In the left-right symmetric model based on $SU(2)_Ltimes SU(2)_Rtimes U(1)_{B-L}$ gauge symmetry, there appear heavy neutral scalar particles mediating quark flavor changing neutral currents (FCNCs) at tree level. We consider a situation where such FCNCs give the only sign of the left-right model while $W_R$ gauge boson is decoupled, and name it semi-aligned two Higgs doublet model because the model resembles a two Higgs doublet model with mildly-aligned Yukawa couplings to quarks. We predict a correlation among processes induced by quark FCNCs in the model, and argue that future precise calculation of meson-antimeson mixings and CP violation therein may hint at the semi-aligned two Higgs doublet model and the left-right model behind it.