Do you want to publish a course? Click here

Many-spin entanglement in multiple quantum NMR with a dipolar ordered initial state

64   0   0.0 ( 0 )
 Added by Ilia Lazarev
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multiple quantum (MQ) NMR with a dipolar ordered initial state opens new possibilities for the exploration of many-spin entanglement. In this paper, we investigate many-spin entanglement in a gas of spin-carrying molecules (atoms) in nanocavities in the conditions of MQ NMR with a dipolar ordered initial state. The second moment of the distribution of the intensities of MQ NMR coherences, which provides a lower bound on the quantum Fisher information, is used for an estimate of the number of the entangled spins. Many-spin entanglement is investigated at different temperatures and different numbers of spins.



rate research

Read More

We use multiple quantum (MQ) NMR dynamics of a gas of spin-carrying molecules in nanocavities at high and low temperatures for an investigation of many-particle entanglement. A distribution of MQ NMR intensities is obtained at high and low temperatures in a system of 201 spins 1/2. The second moment of the distribution, which provides a lower bound on the quantum Fisher information, sheds light on the many-particle entanglement in the system. The dependence of the many-particle entanglement on the temperature is investigated. Almost all spins are entangled at low temperatures.
We investigate the evolution of entanglement in multiple-quantum (MQ) NMR experiments in crystals with pairs of close nuclear spins-1/2. The initial thermodynamic equilibrium state of the system in a strong external magnetic field evolves under the non-secular part of the dipolar Hamiltonian. As a result, MQ coherences of the zeroth and plus/minus second orders appear. A simple condition for the emergence of entanglement is obtained. We show that the measure of the spin pair entanglement, concurrence, coincides qualitatively with the intensity of MQ coherences of the plus/minus second order and hence the entanglement can be studied with MQ NMR methods. We introduce an Entanglement Witness using MQ NMR coherences of the plus/minus second order.
Recently developed quantum algorithms suggest that in principle, quantum computers can solve problems such as simulation of physical systems more efficiently than classical computers. Much remains to be done to implement these conceptual ideas into actual quantum computers. As a small-scale demonstration of their capability, we simulate a simple many-fermion problem, the Fano-Anderson model, using liquid state Nuclear Magnetic Resonance (NMR). We carefully designed our experiment so that the resource requirement would scale up polynomially with the size of the quantum system to be simulated. The experimental results allow us to assess the limits of the degree of quantum control attained in these kinds of experiments. The simulation of other physical systems, with different particle statistics, is also discussed.
263 - S. I. Doronin 2003
Dynamics of entanglement is investigated on the basis of exactly solvable models of multiple-quantum (MQ) NMR spin dynamics. It is shown that the time evolution of MQ coherences of systems of coupled nuclear spins in solids is directly connected with dynamics of the quantum entanglement. We studied analytically dynamics of entangled states for two- and three-spin systems coupled by the dipole-dipole interaction. In this case dynamics of the quantum entanglement is uniquely determined by the time evolution of MQ coherences of the second order. The real part of the density matrix describing MQ dynamics in solids is responsible for MQ coherences of the zeroth order while its imaginary part is responsible for the second order. Thus, one can conclude that dynamics of the entanglement is connected with transitions from the real part of the density matrix to the imaginary one and vice versa. A pure state which generalizes the GHZ and W states is found. Different measures of the entanglement of this state are analyzed for three-partite systems.
The evolution of entanglement in a 3-spin chain with nearest-neighbor Heisenberg-XY interactions for different initial states is investigated here. In an NMR experimental implementation, we generate multipartite entangled states starting from initial separable pseudo-pure states by simulating nearest-neighbor XY interactions in a 3-spin linear chain of nuclear spin qubits. For simulating XY interactions, we follow algebraic method of Zhang et al. [Phys. Rev. A 72, 012331 (2005)]. Bell state between end qubits has been generated by using only the unitary evolution of the XY Hamiltonian. For generating W-state and GHZ-state a single qubit rotation is applied on second and all the three qubits respectively after the unitary evolution of the XY Hamiltonian.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا