No Arabic abstract
In marine offshore engineering, cost-efficient simulation of unsteady water waves and their nonlinear interaction with bodies are important to address a broad range of engineering applications at increasing fidelity and scale. We consider a fully nonlinear potential flow (FNPF) model discretized using a Galerkin spectral element method to serve as a basis for handling both wave propagation and wave-body interaction with high computational efficiency within a single modellingapproach. We design and propose an efficientO(n)-scalable computational procedure based on geometric p-multigrid for solving the Laplace problem in the numerical scheme. The fluid volume and the geometric features of complex bodies is represented accurately using high-order polynomial basis functions and unstructured meshes with curvilinear prism elements. The new p-multigrid spectralelement model can take advantage of the high-order polynomial basis and thereby avoid generating a hierarchy of geometric meshes with changing number of elements as required in geometric h-multigrid approaches. We provide numerical benchmarks for the algorithmic and numerical efficiency of the iterative geometric p-multigrid solver. Results of numerical experiments are presented for wave propagation and for wave-body interaction in an advanced case for focusing design waves interacting with a FPSO. Our study shows, that the use of iterative geometric p-multigrid methods for theLaplace problem can significantly improve run-time efficiency of FNPF simulators.
Achieving accurate numerical results of hydrodynamic loads based on the potential-flow theory is very challenging for structures with sharp edges, due to the singular behavior of the local-flow velocities. In this paper, we introduce the Extended Finite Element Method (XFEM) to solve fluid-structure interaction problems involving sharp edges on structures. Four different FEM solvers, including conventional linear and quadratic FEMs as well as their corresponding XF
Sparse spectral methods for solving partial differential equations have been derived in recent years using hierarchies of classical orthogonal polynomials on intervals, disks, and triangles. In this work we extend this methodology to a hierarchy of non-classical orthogonal polynomials on disk slices (e.g. a half-disk) and trapeziums. This builds on the observation that sparsity is guaranteed due to the boundary being defined by an algebraic curve, and that the entries of partial differential operators can be determined using formulae in terms of (non-classical) univariate orthogonal polynomials. We apply the framework to solving the Poisson, variable coefficient Helmholtz, and Biharmonic equations.
Global spectral analysis (GSA) is used as a tool to test the accuracy of numerical methods with the help of canonical problems of convection and convection-diffusion equation which admit exact solutions. Similarly, events in turbulent flows computed by direct numerical simulation (DNS) are often calibrated with theoretical results of homogeneous isotropic turbulence due to Kolmogorov, as given in Turbulence -U. Frisch, Cambridge Univ. Press, UK (1995). However, numerical methods for the simulation of this problem are not calibrated, as by using GSA of convection and/or convection-diffusion equation. This is with the exception in A critical assessment of simulations for transitional and turbulence flows-Sengupta, T.K., In Proc. of IUTAM Symp. on Advances in Computation, Modeling and Control of Transitional and Turbulent Flows, pp 491-532, World Sci. Publ. Co. Pte. Ltd., Singapore (2016), where such a calibration has been advocated with the help of convection equation. For turbulent flows, an extreme event is characterized by the presence of length scales smaller than the Kolmogorov length scale, a heuristic limit for the largest wavenumber present without being converted to heat. With growing computer power, recently many simulations have been reported using a pseudo-spectral method, with spatial discretization performed in Fourier spectral space and a two-stage, Runge-Kutta (RK2) method for time discretization. But no analyses are reported to ensure high accuracy of such simulations. Here, an analysis is reported for few multi-stage Runge-Kutta methods in the Fourier spectral framework for convection and convection-diffusion equations. We identify the major source of error for the RK2-Fourier spectral method using GSA and also show how to avoid this error and specify numerical parameters for achieving highest accuracy possible to capture extreme events in turbulent flows.
In the present work we show some results on the effect of the Smagorinsky model on the stability of the associated perturbation equation. We show that in the presence of a spectral gap, such that the flow can be decomposed in a large scale with moderate gradient and a small amplitude fine scale with arbitratry gradient, the Smagorinsky model admits stability estimates for perturbations, with exponential growth depending only on the large scale gradient. We then show in the context of stabilized finite element methods that the same result carries over to the approximation and that in this context, for suitably chosen finite element spaces the Smagorinsky model acts as a stabilizer yielding close to optimal error estimates in the $L^2$-norm for smooth flows in the pre-asymptotic high Reynolds number regime.
In this paper we design efficient quadrature rules for finite element discretizations of nonlocal diffusion problems with compactly supported kernel functions. Two of the main challenges in nonlocal modeling and simulations are the prohibitive computational cost and the nontrivial implementation of discretization schemes, especially in three-dimensional settings. In this work we circumvent both challenges by introducing a parametrized mollifying function that improves the regularity of the integrand, utilizing an adaptive integration technique, and exploiting parallelization. We first show that the mollified solution converges to the exact one as the mollifying parameter vanishes, then we illustrate the consistency and accuracy of the proposed method on several two- and three-dimensional test cases. Furthermore, we demonstrate the good scaling properties of the parallel implementation of the adaptive algorithm and we compare the proposed method with recently developed techniques for efficient finite element assembly.