No Arabic abstract
We report the first systematic analysis of single exposures of all optical and ultraviolet (UV) observations performed by the UltraViolet and Optical Telescope (UVOT) on board the {em Neil Gehrels Swift Observatory} satellite available up to 2019 April of six $gamma$-ray-emitting narrow-line Seyfert 1 galaxies (NLSy1). Rapid variability has been significantly detected on hours time-scale for 1H 0323+342, SBS 0846+513, PMN J0948+0022, and PKS 2004-447 in 18 observations for a total of 34 events. In particular, we report the first detection of significant variability on short time-scale (3-6 ks) in optical for PKS 2004-447, and UV for 1H 0323+342 and PMN J0948+0022. The shortest variability time-scale observed for 1H 0323+342, SBS 0846+513, PMN J0948+0022, and PKS 2004-447 (assuming a Doppler factor delta = 10) gives a lower limit on the size of emission region between 9.7 $times$ 10$^{14}$ (for SBS 0846+513) and 1.6 $times$ 10$^{15}$ cm (for 1H 0323+342), suggesting that the optical and UV emission during these events is produced in compact regions within the jet. These observations provide unambiguous evidence about the relativistically beamed synchrotron emission in these sources, similar to blazars. A remarkable variability has been observed for PMN J0948+0022 on 2009 June 23 with an increase from $sim$1.1 to 0.4 mag going from v to w2 filter in $sim$1.6 h and a decrease at the initial level in a comparable time. The higher fractional flux change observed for this and other events at lower frequencies suggests that the synchrotron emission is more contaminated by thermal emission from accretion disc at higher frequencies.
Before the launch of the Fermi Gamma-ray Space Telescope satellite only two classes of active galactic nuclei (AGN) were known to generate relativistic jets and thus to emit up to the $gamma$-ray energy range: blazars and radio galaxies, both hosted in giant elliptical galaxies. The discovery by the Large Area Telescope (LAT) on-board the Fermi satellite of variable $gamma$-ray emission from a few radio-loud narrow-line Seyfert 1 galaxies (NLSy1) revealed the presence of an emerging third class of AGN with powerful relativistic jets. Considering that NLSy1 are usually hosted in late-type galaxies with relatively small black hole masses, this finding opened new challenging questions about the nature of these objects, the disc/jet connection, the emission mechanisms at high energies, and the formation of relativistic jets. In this review, I will discuss the broad-band properties of the $gamma$-ray-emitting NLSy1 included in the Fourth Fermi LAT source catalog, highlighting major findings and open questions regarding jet physics, black hole mass estimation, host galaxy and accretion process of these sources in the Fermi era.
We report the analysis of all Swift observations available up to 2019 April of $gamma$-ray-emitting narrow-line Seyfert 1 galaxies (NLSy1). The distribution of X-ray luminosities (and fluxes) indicates that the jet radiation significantly contributes to their X-ray emission, with Doppler boosting making values higher than other radio-loud NLSy1. The 0.3-10 keV photon indices are on average harder with respect to radio-quiet and radio-loud NLSy1, confirming a dominant jet contribution in X-rays. However, the lower variability amplitude with respect to blazars and the softening of the spectrum in some periods suggests that also the corona radiation contributes to the X-ray emission. In optical and ultraviolet (UV) significant flux changes have been observed on daily, weekly, and monthly time-scale, providing a clear indication of the significant contribution of the jet radiation in this part of spectrum. A strong correlation between X-ray, UV, and optical emission and simultaneous flux variations have been observed in 1H 0323+342, SBS 0846+513, PMN J0948+0022 as expected in case the jet radiation is the dominant mechanism. Correlated multiband variability favours the jet-dominated scenario also in FBQS J1644+2619 and PKS 2004-447. The summed X-ray Telescope spectra of 1H 0323+342, SBS 0846+513, PMN J0948+0022, and FBQS J1644+2619 are well fitted by a broken power law with a break around 2 keV. The spectrum above 2 keV is dominated by the non-thermal emission from a beamed relativistic jet, as suggested by the hard photon index. A Seyfert-like feature like the soft X-ray excess has been observed below 2 keV, making these $gamma$-ray-emitting NLSy1 different from typical blazars.
This article reviews our current understanding about $gamma$-ray detected narrow-line Seyfert 1 ($gamma$-NLSy1) galaxies. The detection with the Large Area Telescope onboard {it Fermi}~Gamma-ray Space Telescope has provided the strongest evidence for the presence of closely aligned relativistic jet in these intriguing active galactic nuclei (AGN) and opened up a realm to explore the physical conditions needed to launch the jet in a different central engine and host galaxy environment than that is known for blazars. Promising results acquired from various multi-wavelength campaigns are converging to a scenario in which the $gamma$-NLSy1 galaxies can be considered as `young blazars. These enigmatic sources hold the key to unravel the jet triggering mechanism and evolution of the AGN phase of a galaxy, in general. As such, $gamma$-NLSy1s should be considered as one of the top priority targets for next generation observational facilities.
Broadband spectrum of AGN consists of multiple components such as jet emission and accretion disk emission. Temporal correlation study is useful to understand emission components and their physical origins. We have performed optical monitoring using Kanata telescope for 4 radio galaxies and 6 radio-loud Narrow-Line Seyfert 1 (RL-NLSy1): 2 gamma-ray-loud RL-NLSy1s, 1H 0323+342 and PMN J0948+0022, and 4 gamma-ray-quiet RL-NLSy1s. From these results, it is suggested that RL-NLSy1s show a disk-dominant phase and a jet-dominant phase in the optical band, but it is not well correlated with brightness.
The recent detection of gamma-ray emission from four radio-loud narrow-line Seyfert 1 galaxies suggests that the engine driving the AGN activity of these objects share some similarities with that of blazars, namely the presence of a gamma-ray emitting, variable, jet of plasma closely aligned to the line of sight. In this work we analyze the gamma-ray light curves of the four radio-loud narrow-line Seyfert 1 galaxies for which high-energy gamma-ray emission has been discovered by Fermi/LAT, in order to study their variability. We find significant flux variability in all the sources. This allows us to exclude a starburst origin of the gamma-ray photons and confirms the presence of a relativistic jet. Furthermore we estimate the minimum e-folding variability timescale (3 - 30 days) and infer an upper limit for the size of the emitting region (0.2 - 2 pc, assuming a relativistic Doppler factor delta=10 and a jet aperture of theta=0.1 rad).