No Arabic abstract
Modern nanophotonics has witnessed the rise of electric anapoles, destructive interferences of electric dipoles and toroidal electric dipoles, actively exploited to cancel electric dipole radiation from nanoresonators. However, the inherent duality of Maxwells equations suggests the intriguing possibility of magnetic anapoles, involving a nonradiating composition of a magnetic dipole and a magnetic toroidal dipole. Here, we predict, fabricate and observe experimentally via a series of dark field spectroscopy measurements a hybrid anapole of mixed electric and magnetic character, with all the dominant multipoles being suppressed by the toroidal terms in a nanocylinder. We delve into the physics of such exotic current configurations in the stationary and transient regimes and predict a number of ultrafast phenomena taking place within sub-ps times after the breakdown of the hybrid anapole. Based on the preceding theory, we design a non-Huygens metasurface featuring a dual functionality: perfect transparency in the stationary regime and controllable ultrashort pulse beatings in the transient.
Hybrid plasmonic photonic structures combine the plasmonic response with the photonic band gap, holding promise for utilization as optical switches and sensors. Here, we demonstrate the active modulation of the optical response in such structures with two different external stimuli, e.g. laser pulses and bacteria. First, we report the fabrication of a miniaturized (5 x 5 mm) indium tin oxide (ITO) grating employing femtosecond laser micromachining, and we show the possibility to modulate the photonic band gap in the visible via ultrafast photoexcitation in the infrared part of the spectrum. Note that the demonstrated time response in the picosecond range of the spectral modulation have an industrial relevance. Moreover, we manufacture one-dimensional photonic crystals consisting of a solution-processed dielectric Bragg stack exposing a top-layer of bio-active silver. We assign the bacterial responsivity of the system to polarization charges at the Ag/bacterium interface, giving rise to an overall blue shift of the photonic band gap.
Nonradiating current configurations attract attention of physicists for many years as possible models of stable atoms in the field theories. One intriguing example of such a nonradiating source is known as anapole (which means without poles in Greek), and it was originally proposed by Yakov Zeldovich in nuclear physics. Recently, an anapole was suggested as a model of elementary particles describing dark matter in the Universe. Classically, an anapole mode can be viewed as a composition of electric and toroidal dipole moments, resulting in destructive interference of the radiation fields due to similarity of their far-field scattering patterns. Here we demonstrate experimentally that dielectric nanoparticles can exhibit a radiationless anapole mode in visible. We achieve the spectral overlap of the toroidal and electric dipole modes through a geometry tuning, and observe a highly pronounced dip in the far-field scattering accompanied by the specific near-field distribution associated with the anapole mode. The anapole physics provides a unique playground for the study of electromagnetic properties of nontrivial excitations of complex fields, reciprocity violation, and Aharonov-Bohm like phenomena at optical frequencies.
Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast pump is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an an even-order nonlinear optical response. The temporal evolution of the plasmonic near-field is characterized with ~100as resolution using a novel nonlinear interferometric technique. The ability to manipulate nonlinear signals in a metamaterial geometry as demonstrated here is indispensable both to understanding the ultrafast nonlinear response of nanoscale materials, and to producing active, optically reconfigurable plasmonic devices
We extend the recently developed classical theory for the optical response of a single-layer crystal to bilayers. We account for the interaction between the two atomic planes and the multiple reflections inside the crystals. We show how to define a global susceptibility meaningful for the bilayer crystal and how its expression varies compared to the single-layer case. We compute both the local and the macroscopic fields which allow us for a direct comparison with experimental data.
We report a measurement on the temporal response of a plasmonic antenna at the femtosecond time scale. The antenna consists of a square array of nanometer-size gold rods. We find that the far-field dispersion of light reflected from the plasmonic antenna is less than that of a 1.2 mm thick glass slide. Assuming a simple oscillating dipole model this implies that the near-field of the antenna may be used as an electron switch that responds faster than 20 fs. Alternatively, ultrafast electron diffraction may be used to investigate the near-field dynamics of the plasmonic antenna.