No Arabic abstract
In this paper we propose Virtuoso, a purely software-based multi-path RDMA solution for data center networks (DCNs) to effectively utilize the rich multi-path topology for load balancing and reliability. As a middleware library operating at the user space, Virtuoso employs three innovative mechanisms to achieve its goal. In contrast to existing hardware-based MP-RDMA solution, Virtuoso can be readily deployed in DCNs with existing RDMA NICs. It also decouples path selection and load balancing mechanisms from hardware features, allowing DCN operators and applications to make flexible decisions by employing the best mechanisms (as plug-in software library modules) as needed. Our experiments show that Virtuoso is capable of fully utilizing multiple paths with negligible CPU overheads
Traffic Matrix estimation has always caught attention from researchers for better network management and future planning. With the advent of high traffic loads due to Cloud Computing platforms and Software Defined Networking based tunable routing and traffic management algorithms on the Internet, it is more necessary as ever to be able to predict current and future traffic volumes on the network. For large networks such origin-destination traffic prediction problem takes the form of a large under-constrained and under-determined system of equations with a dynamic measurement matrix. In this work, we present our Compressed Sensing with Dynamic Model Estimation (CS-DME) architecture suitable for modern software defined networks. Our main contributions are: (1) we formulate an approach in which measurement matrix in the compressed sensing scheme can be accurately and dynamically estimated through a reformulation of the problem based on traffic demands. (2) We show that the problem formulation using a dynamic measurement matrix based on instantaneous traffic demands may be used instead of a stationary binary routing matrix which is more suitable to modern Software Defined Networks that are constantly evolving in terms of routing by inspection of its Eigen Spectrum using two real world datasets. (3) We also show that linking this compressed measurement matrix dynamically with the measured parameters can lead to acceptable estimation of Origin Destination (OD) Traffic flows with marginally poor results with other state-of-art schemes relying on fixed measurement matrices. (4) Furthermore, using this compressed reformulated problem, a new strategy for selection of vantage points for most efficient traffic matrix estimation is also presented through a secondary compression technique based on subset of link measurements.
Load Balancing plays a vital role in modern data centers to distribute traffic among instances of network functions or services. State-of-the-art load balancers such as Silkroad dispatch traffic obliviously without considering the real-time utilization of service instances and therefore can lead to uneven load distribution and suboptimal performance. In this paper, we design and implement Spotlight, a scalable and distributed load balancing architecture that maintains connection-to-instance mapping consistency at the edge of data center networks. Spotlight uses a new stateful flow dispatcher which periodically polls instances load and dispatches incoming connections to instances in proportion to their available capacity. Our design utilizes distributed control plane and in-band flow dispatching and thus scales horizontally in data center networks. Through extensive flow-level simulation and packet-level experiments on a testbed, we demonstrate that compared to existing methods Spotlight distributes the traffic more efficiently and has near-optimum performance in terms of overall service utilization. Moreover, Spotlight is not sensitive to utilization polling interval and therefore can be implemented with low polling frequency to reduce the amount of control traffic. Indeed, Spotlight achieves the mentioned performance improvements using O(100ms) polling interval.
There is a strong devotion in the automotive industry to be part of a wider progression towards the Fifth Generation (5G) era. In-vehicle integration costs between cellular and vehicle-to-vehicle networks using Dedicated Short Range Communication could be avoided by adopting Cellular Vehicle-to-Everything (C-V2X) technology with the possibility to re-use the existing mobile network infrastructure. More and more, with the emergence of Software Defined Networks, the flexibility and the programmability of the network have not only impacted the design of new vehicular network architectures but also the implementation of V2X services in future intelligent transportation systems. In this paper, we define the concepts that help evaluate software-defined-based vehicular network systems in the literature based on their modeling and implementation schemes. We first overview the current studies available in the literature on C-V2X technology in support of V2X applications. We then present the different architectures and their underlying system models for LTE-V2X communications. We later describe the key ideas of software-defined networks and their concepts for V2X services. Lastly, we provide a comparative analysis of existing SDN-based vehicular network system grouped according to their modeling and simulation concepts. We provide a discussion and highlight vehicular ad-hoc networks challenges handled by SDN-based vehicular networks.
The advent of RoCE (RDMA over Converged Ethernet) has led to a significant increase in the use of RDMA in datacenter networks. To achieve good performance, RoCE requires a lossless network which is in turn achieved by enabling Priority Flow Control (PFC) within the network. However, PFC brings with it a host of problems such as head-of-the-line blocking, congestion spreading, and occasional deadlocks. Rather than seek to fix these issues, we instead ask: is PFC fundamentally required to support RDMA over Ethernet? We show that the need for PFC is an artifact of current RoCE NIC designs rather than a fundamental requirement. We propose an improved RoCE NIC (IRN) design that makes a few simple changes to the RoCE NIC for better handling of packet losses. We show that IRN (without PFC) outperforms RoCE (with PFC) by 6-83% for typical network scenarios. Thus not only does IRN eliminate the need for PFC, it improves performance in the process! We further show that the changes that IRN introduces can be implemented with modest overheads of about 3-10% to NIC resources. Based on our results, we argue that research and industry should rethink the current trajectory of network support for RDMA.
The power consumption of enormous network devices in data centers has emerged as a big concern to data center operators. Despite many traffic-engineering-based solutions, very little attention has been paid on performance-guaranteed energy saving schemes. In this paper, we propose a novel energy-saving model for data center networks by scheduling and routing deadline-constrained flows where the transmission of every flow has to be accomplished before a rigorous deadline, being the most critical requirement in production data center networks. Based on speed scaling and power-down energy saving strategies for network devices, we aim to explore the most energy efficient way of scheduling and routing flows on the network, as well as determining the transmission speed for every flow. We consider two genera