Do you want to publish a course? Click here

The ground state and polymorphism of LiSc(BH4)4 finally understood by Density Functional Theory modelling

355   0   0.0 ( 0 )
 Added by Mariana Derzsi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a new metastable gamma polymorph of mixed metal borohydride LiSc(BH4)4. Using Density Functional Theory calculations with dispersion corrections, we prove importance of van der Waals H...H interactions for correct theoretical description of the title compound. We propose the ordered ground state structure (alpha form) and revise the recently reported beta phase, now describing it as a solid solution, LiSc(BH4)4-xClx, x~0.7. The LiSc(BH4)4 polymorphism is rationalized using Zr(BH4)4 type structure with Sc --> Zr and Li in the interstitial face-centered positions.



rate research

Read More

428 - A. Bil , B. Kolb , R. Atkinson 2011
In order to resolve an outstanding discrepancy between experiment and theory regarding the ground-state structure of Mg(BH4)2, we examine the importance of long-range dispersive interactions on the compounds thermodynamic stability. Careful treatment of the correlation effects within a recently developed nonlocal van der Waals density functional (vdW-DF) leads to a good agreement with experiment, favoring the {alpha}-Mg(BH4)2 phase (P6122) and a closely related Mn(BH4)2-prototype phase (P3112) over a large set of polymorphs at low temperatures. Our study demonstrates the need to go beyond (semi)local density functional approximations for a reliable description of crystalline high-valent metal borohydrides.
66 - Gul Rahman , Saad Sarwar 2016
Using density functional theory calculations, the ground state structure of BaFeO$_3$ (BFO) is investigated with local spin density approximation (LSDA). Cubic, tetragonal, orthorhombic, and rhombohedral types BFO are considered to calculate the formation enthalpy. The formation enthalpies reveal that cubic is the most stable structure of BFO. Small energy difference between the cubic and tetragonal suggests a possible tetragonal BFO. Ferromagnetic(FM) and anitiferromagnetic (AFM) coupling between the Fe atoms show that all the striochmetric BFO are FM. The energy difference between FM and AFM shows room temperature ferromagnetism in cubic BFO in agreement with the experimental work. The LSDA calculated electronic structures are metallic in all studied crystallographic phases of BFO. Calculations including the Hubbard potential $U,i.e.$ LSDA+$U$, show that all phases of BFO are half-metallic consistent with the integer magnetic moments. The presence of half-metallicity is discussed in terms of electronic band structures of BFO.
The success of descriptor-based material design relies on eliminating bad candidates and keeping good candidates for further investigation. While DFT has been widely successfully for the former, often times good candidates are lost due to the uncertainty associated with the DFT-predicted material properties. Uncertainty associated with DFT predictions has gained prominence and has led to the development of exchange correlation functionals that have built-in error estimation capability. In this work, we demonstrate the use of built-in error estimation capabilities within the BEEF-vdW exchange correlation functional for quantifying the uncertainty associated with the magnetic ground state of solids. We demonstrate this approach by calculating the uncertainty estimate for the energy difference between the different magnetic states of solids and compare them against a range of GGA exchange correlation functionals as is done in many first principles calculations of materials. We show that this estimate reasonably bounds the range of values obtained with the different GGA functionals. The estimate is determined as a post-processing step and thus provides a computationally robust and systematic approach to estimating uncertainty associated with predictions of magnetic ground states. We define a confidence value (c-value) that incorporates all calculated magnetic states in order to quantify the concurrence of the prediction at the GGA level and argue that predictions of magnetic ground states from GGA level DFT is incomplete without an accompanying c-value. We demonstrate the utility of this method using a case study of Li and Na-ion cathode materials and the c-value metric correctly identifies that GGA level DFT will have low predictability for NaFePO$_4$F.
Time-dependent density functional theory is extended to include dissipative systems evolving under a master equation, providing a Hamiltonian treatment for molecular electronics. For weak electric fields, the isothermal conductivity is shown to match the adiabatic conductivity, thereby recovering the Landauer result.
CeCuAl3 and CeAuAl3, crystallizing in the non-centrosymmetric BaNiSn3 tetragonal structure, are known mainly for their unusual neutron scattering spectra involving additional excitations ascribed to vibron quasi-bound quantum state in CeCuAl3 and anti-crossing of phonon and crystal field excitations in CeAuAl3. In this work, we present results of nuclear magnetic resonance experiments on their lanthanum analogues - LaCuAl3 and LaAuAl3. The character of nuclear magnetic resonance spectra of 139La, 27Al, and 65Cu measured in LaAuAl3 and LaCuAl3 is dominated by electric quadrupole interaction. The spectral parameters acquired from experimental data are confronted with values obtained from the electronic structure calculations. The results show remarkable diffrences for the two compounds. The 139La spectrum in LaAuAl3 can be interpreted by a single spectral component corresponding to uniform environment of La atoms in the crystal structure, whereas for LaCuAl3 the spectrum decomposition yields a wide distribution of spectral parameters, which is not possible to explain by a single La environment, and multiple non-equivalent La positions in the crystal structure are required to interpret the spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا