Do you want to publish a course? Click here

Model-independent study of structure in $B^+to D^+D^-K^+$ decays

62   0   0.0 ( 0 )
 Added by Daniel Johnson
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The only anticipated resonant contributions to $B^+to D^+D^-K^+$ decays are charmonium states in the $D^+D^-$ channel. A model-independent analysis, using LHCb proton-proton collision data taken at centre-of-mass energies of $sqrt{s}=7,8,$ and $13$ TeV, corresponding to a total integrated luminosity of 9 fb$^{-1}$, is carried out to test this hypothesis. The description of the data assuming that resonances only manifest in decays to the $D^+D^-$ pair is shown to be incomplete. This constitutes evidence for a new contribution to the decay, potentially one or more new charm-strange resonances in the $D^-K^+$ channel with masses around 2.9 GeV$/c^2$.



rate research

Read More

A measurement of four branching-fraction ratios for three-body decays of $B$ mesons involving two open-charm hadrons in the final state is presented. Run 1 and Run 2 $pp$ collision data are used, recorded by the LHCb experiment at centre-of-mass energies $7$, $8$, and $13$ TeV and corresponding to an integrated luminosity of $9$ fb$^{-1}$. The measured branching-fraction ratios are [ begin{eqnarray} frac{mathcal{B} (B^+to D^{*+}D^-K^+)}{mathcal{B} (B^+to kern 0.2emoverline{kern -0.2em D}{}^0 D^0 K^+)} &=& 0.517 pm 0.015 pm 0.013 pm 0.011 , frac{mathcal{B} (B^+to D^{*-}D^+K^+)}{mathcal{B} (B^+to kern 0.2emoverline{kern -0.2em D}{}^0 D^0 K^+)} &=& 0.577 pm 0.016 pm 0.013 pm 0.013 , frac{mathcal{B} (B^0to D^{*-}D^0K^+)}{mathcal{B} (B^0to D^- D^0 K^+)} &=& 1.754 pm 0.028 pm 0.016 pm 0.035 , frac{mathcal{B} (B^+to D^{*+}D^-K^+)}{mathcal{B} (B^+to D^{*-}D^+K^+)} &=& 0.907 pm 0.033 pm 0.014 ,end{eqnarray} ] where the first of the uncertainties is statistical, the second systematic, and the third is due to the uncertainties on the $D$-meson branching fractions. These are the most accurate measurements of these ratios to date.
151 - K. Abe , et al. 2006
We report a study of the modes D_CP K+- and D^*_CP K+- where D^(*) decays to CP eigenstates. The data sample used contains 275 x 10^6 BB events at the Upsilon(4S) resonance collected by the Belle detector at the KEKB energy-asymmetric e^+ e^- collider. The CP asymmetries obtained for D_CP K are: A_1 = 0.06 +- 0.14 (stat) +- 0.05 (sys), A_2 = -0.12 +- 0.14 (stat) +- 0.05 (sys) and for D^*_CP K : A_1^* = -0.20 +- 0.22 (stat) +- 0.04 (sys), A_2^* = 0.13 +- 0.30 (stat) +- 0.08 (sys).
The B -> D^{(*)} K^- K^{(*)0} decays have been observed for the first time. The branching fractions of the B -> D^{(*)} K^- K^{(*)0} decay modes are measured. Significant signals are found for the B -> D^{(*)} K^- K^{*0} and B^- -> D^0 K^- K^0_S decay modes. The invariant mass and polarization distributions for the K^-K^{*0} and K^-K^0_S subsystems have been studied. For the K^-K^{*0} sybsystem these distributions agree well with those expected for two-body B -> D^{(*)} a_1^-(1260) decays, with a_1^-(1260) -> K^- K^{*0}. The analysis was done using 29.4 fb^{-1} of data collected with the Belle detector at the e^+ e^- asymmetric collider KEKB.
A first study of CP violation in the decay modes $B^pmto [K^0_{rm S} K^pm pi^mp]_D h^pm$ and $B^pmto [K^0_{rm S} K^mp pi^pm]_D h^pm$, where $h$ labels a $K$ or $pi$ meson and $D$ labels a $D^0$ or $overline{D}^0$ meson, is performed. The analysis uses the LHCb data set collected in $pp$ collisions, corresponding to an integrated luminosity of 3 fb$^{-1}$. The analysis is sensitive to the CP-violating CKM phase $gamma$ through seven observables: one charge asymmetry in each of the four modes and three ratios of the charge-integrated yields. The results are consistent with measurements of $gamma$ using other decay modes.
We present measurements of branching fractions and CP asymmetries of several B- -> D(*)0 K(*)- decays, with the D(*)0 decaying to CP-even, CP-odd, and flavor eigenstates, that can constrain the CP angle gamma as well as the amplitude ratio rb=A(B -> u)/A(B -> c), using methods proposed by Gronau, London and Wyler or Atwood, Dunietz and Sony. We use data collected with the BABAR detector at the PEP-II asymmetric energy e+e- collider at SLAC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا