Do you want to publish a course? Click here

Cool stars in the Galactic Center as seen by APOGEE: M giants, AGB stars and supergiant stars/candidates

74   0   0.0 ( 0 )
 Added by Mathias Schultheis
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Galactic Center region, including the nuclear disk, has until recently been largely avoided in chemical census studies because of extreme extinction and stellar crowding. Making use of the latest APOGEE data release (DR16), we are able for the first time to study cool AGB stars and supergiants in this region. The stellar parameters of five known AGB stars and one supergiant star (VR 5-7) show that their location is well above the tip of the RGB.We study metallicities of 157 M giants situated within 150 pc of the Galactic center from observations obtained by the APOGEE survey with reliable stellar parameters from the APOGEE/ASPCAP pipeline making use of the cool star grid down to 3200 K. Distances, interstellar extinction values, and radial velocities were checked to confirm that these stars are indeed situated in the Galactic Center region. We detect a clear bimodal structure in the metallicity distribution function, with a dominant metal-rich peak of [Fe/H] ~ +0.3 dex and a metal-poor peak around [Fe/H]= -0.5 dex, which is 0.2 dex poorer than Baades Window. The alpha-elements Mg, Si, Ca, and O show a similar trend to the Galactic Bulge. The metal-poor component is enhanced in the alpha-elements, suggesting that this population could be associated with the classical bulge and a fast formation scenario. We find a clear signature of a rotating nuclear stellar disk and a significant fraction of high velocity stars with $rm v_{gal} > 300,km/s$; the metal-rich stars show a much higher rotation velocity ($rm sim 200,km/s$) with respect to the metal-poor stars ($rm sim 140,km/s$). The chemical abundances as well as the metallicity distribution function suggest that the nuclear stellar disc and the nuclear star cluster show distinct chemical signatures and might be formed differently.



rate research

Read More

The presence of AGB stars in clusters provides key constraints for stellar models, as has been demonstrated with historical data from the Magellanic Clouds. In this work, we look for candidate AGB stars in M31 star clusters from the Panchromatic Hubble Andromeda Treasury (PHAT) survey. Our photometric criteria selects stars brighter than the tip of the red giant branch, which includes the bulk of the thermally-pulsing AGB stars as well as early-AGB stars and other luminous cool giants expected in young stellar populations (e.g. massive red supergiants, and intermediate-mass red helium-burning stars). The AGB stars can be differentiated, a posteriori, using the ages already estimated for our cluster sample. 937 candidates are found within the cluster aperture radii, half (450) of which are very likely cluster members. Cross-matching with additional databases reveals two carbon stars and ten secure variables among them. The field-corrected age distribution reveals the presence of young supergiants peaking at ages smaller than 100 Myr, followed by a long tail of AGB stars extending up to the oldest possible ages. This long tail reveals the general decrease in the numbers of AGB stars from initial values of 50e-6/Msun at 100 Myr down to 5e-6/Msun at 10 Gyr. Theoretical models of near-solar metallicity reproduce this general trend, although with localized discrepancies over some age intervals, whose origin is not yet identified. The entire catalogue is released together with finding charts to facilitate follow-up studies.
Stellar surface processes represent a fundamental limit to the detection of extrasolar planets with the currently most heavily-used techniques. As such, considerable effort has gone into trying to mitigate the impact of these processes on planet detection, with most studies focusing on magnetic spots. Meanwhile, high-precision photometric planet surveys like CoRoT and Kepler have unveiled a wide variety of stellar variability at previously inaccessible levels. We demonstrate that these newly revealed variations are not solely magnetically driven but also trace surface convection through light curve flicker. We show that flicker not only yields a simple measurement of surface gravity with a precision of ~0.1 dex, but it may also improve our knowledge of planet properties, enhance radial velocity planet detection and discovery, and provide new insights into stellar evolution.
166 - R. Guandalini , M. Busso 2009
The study of the evolutionary properties of Asymptotic Giant Branch stars still presents unresolved topics. Progress in the theoretical understanding of their evolution is hampered by the difficulty to empirically explain key physical parameters like their luminosity, mass loss rate and chemical abundances. We are performing an analysis of Galactic AGB stars trying to find constraints for these parameters. Our aim is of extending this analysis to the AGB stars of the Magellanic Clouds and of the Dwarf Spheroidal Galaxies using also mid-infrared observations from the Antarctic telescope IRAIT. AGB sources from the Magellanic Clouds will be fundamental in our understanding of the AGB evolution because they are all at a well defined distance (differently from the Galactic AGBs). Moreover, these sources present different values of metallicity: this fact should permit us of examining in a better way their evolutionary properties comparing their behaviour with the one from Galactic sources.
The contribution of dissolved globular clusters (GCs) to the stellar content of the Galactic halo is a key constraint on models for GC formation and destruction, and the mass assembly history of the Milky Way. Earlier results from APOGEE pointed to a large contribution of destroyed GCs to the stellar content of the inner halo, by as much as 25$%$, which is an order of magnitude larger than previous estimates for more distant regions of the halo. We set out to measure the ratio between N-rich and normal halo field stars, as a function of distance, by performing density modelling of halo field populations in APOGEE DR16. Our results show that at 1.5 kpc from the Galactic Centre, N-rich stars contribute a much higher 16.8$^{+10.0}_{-7.0}$$%$ fraction to the total stellar halo mass budget than the 2.7$^{+1.0}_{-0.8}$$%$ ratio contributed at 10 kpc. Under the assumption that N-rich stars are former GC members that now reside in the stellar halo field, and assuming the ratio between first-and second-population GC stars being 1:2, we estimate a total contribution from disrupted GC stars of the order of 27.5$^{+15.4}_{-11.5}$$%$ at r = 1.5 kpc and 4.2$^{+1.5}_{-1.3}$$%$ at r = 10 kpc. Furthermore, since our methodology requires fitting a density model to the stellar halo, we integrate such density within a spherical shell from 1.5-15 kpc in radius, and find a total stellar mass arising from dissolved and/or evaporated GCs of $M_{mathrm{GC,total}}$ = 9.6$^{+4.0}_{-2.6}$ $times$ 10$^{7}$ M$odot$.
132 - Heidi Korhonen 2013
The existence of starspots on late-type giant stars in close binary systems, that exhibit rapid rotation due to tidal locking, has been known for more than five decades. Photometric monitoring spanning decades has allowed studying the long-term magnetic activity in these stars revealing complicated activity cycles. The development of observing and analysis techniques that has occurred during the past two decades has also enabled us to study the detailed starspot and magnetic field configurations on these active giants. In the recent years magnetic fields have also been detected on slowly rotating giants and supergiant stars. In this paper I review what is known of the surface magnetism in the cool giant and supergiant stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا