Do you want to publish a course? Click here

Ranking Policy Decisions

75   0   0.0 ( 0 )
 Added by Hadrien Pouget
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Policies trained via Reinforcement Learning (RL) are often needlessly complex, making them more difficult to analyse and interpret. In a run with $n$ time steps, a policy will decide $n$ times on an action to take, even when only a tiny subset of these decisions deliver value over selecting a simple default action. Given a pre-trained policy, we propose a black-box method based on statistical fault localisation that ranks the states of the environment according to the importance of decisions made in those states. We evaluate our ranking method by creating new, simpler policies by pruning decisions identified as unimportant, and measure the impact on performance. Our experimental results on a diverse set of standard benchmarks (gridworld, CartPole, Atari games) show that in some cases less than half of the decisions made contribute to the expected reward. We furthermore show that the decisions made in the most frequently visited states are not the most important for the expected reward.



rate research

Read More

93 - Yue Jin , Yue Zhang , Tao Qin 2021
Off-policy evaluation (OPE) leverages data generated by other policies to evaluate a target policy. Previous OPE methods mainly focus on precisely estimating the true performance of a policy. We observe that in many applications, (1) the end goal of OPE is to compare two or multiple candidate policies and choose a good one, which is actually a much simpler task than evaluating their true performance; and (2) there are usually multiple policies that have been deployed in real-world systems and thus whose true performance is known through serving real users. Inspired by the two observations, in this work, we define a new problem, supervised off-policy ranking (SOPR), which aims to rank a set of new/target policies based on supervised learning by leveraging off-policy data and policies with known performance. We further propose a method for supervised off-policy ranking that learns a policy scoring model by correctly ranking training policies with known performance rather than estimating their precise performance. Our method leverages logged states and policies to learn a Transformer based model that maps offline interaction data including logged states and the actions taken by a target policy on these states to a score. Experiments on different games, datasets, training policy sets, and test policy sets show that our method outperforms strong baseline OPE methods in terms of both rank correlation and performance gap between the truly best and the best of the ranked top three policies. Furthermore, our method is more stable than baseline methods.
In this work, we consider the problem of estimating a behaviour policy for use in Off-Policy Policy Evaluation (OPE) when the true behaviour policy is unknown. Via a series of empirical studies, we demonstrate how accurate OPE is strongly dependent on the calibration of estimated behaviour policy models: how precisely the behaviour policy is estimated from data. We show how powerful parametric models such as neural networks can result in highly uncalibrated behaviour policy models on a real-world medical dataset, and illustrate how a simple, non-parametric, k-nearest neighbours model produces better calibrated behaviour policy estimates and can be used to obtain superior importance sampling-based OPE estimates.
Machine Learning (ML) increasingly informs the allocation of opportunities to individuals and communities in areas such as lending, education, employment, and beyond. Such decisions often impact their subjects future characteristics and capabilities in an a priori unknown fashion. The decision-maker, therefore, faces exploration-exploitation dilemmas akin to those in multi-armed bandits. Following prior work, we model communities as arms. To capture the long-term effects of ML-based allocation decisions, we study a setting in which the reward from each arm evolves every time the decision-maker pulls that arm. We focus on reward functions that are initially increasing in the number of pulls but may become (and remain) decreasing after a certain point. We argue that an acceptable sequential allocation of opportunities must take an arms potential for growth into account. We capture these considerations through the notion of policy regret, a much stronger notion than the often-studied external regret, and present an algorithm with provably sub-linear policy regret for sufficiently long time horizons. We empirically compare our algorithm with several baselines and find that it consistently outperforms them, in particular for long time horizons.
Reinforcement learning (RL) algorithms still suffer from high sample complexity despite outstanding recent successes. The need for intensive interactions with the environment is especially observed in many widely popular policy gradient algorithms that perform updates using on-policy samples. The price of such inefficiency becomes evident in real-world scenarios such as interaction-driven robot learning, where the success of RL has been rather limited. We address this issue by building on the general sample efficiency of off-policy algorithms. With nonparametric regression and density estimation methods we construct a nonparametric Bellman equation in a principled manner, which allows us to obtain closed-form estimates of the value function, and to analytically express the full policy gradient. We provide a theoretical analysis of our estimate to show that it is consistent under mild smoothness assumptions and empirically show that our approach has better sample efficiency than state-of-the-art policy gradient methods.
Machine learning is a powerful tool for predicting human-related outcomes, from credit scores to heart attack risks. But when deployed, learned models also affect how users act in order to improve outcomes, whether predicted or real. The standard approach to learning is agnostic to induced user actions and provides no guarantees as to the effect of actions. We provide a framework for learning predictors that are both accurate and promote good actions. For this, we introduce look-ahead regularization which, by anticipating user actions, encourages predictive models to also induce actions that improve outcomes. This regularization carefully tailors the uncertainty estimates governing confidence in this improvement to the distribution of model-induced actions. We report the results of experiments on real and synthetic data that show the effectiveness of this approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا