No Arabic abstract
In order to develop systems capable of modeling artificial life, we need to identify, which systems can produce complex behavior. We present a novel classification method applicable to any class of deterministic discrete space and time dynamical systems. The method distinguishes between different asymptotic behaviors of a systems average computation time before entering a loop. When applied to elementary cellular automata, we obtain classification results, which correlate very well with Wolframs manual classification. Further, we use it to classify 2D cellular automata to show that our technique can easily be applied to more complex models of computation. We believe this classification method can help to develop systems, in which complex structures emerge.
In order to develop systems capable of artificial evolution, we need to identify which systems can produce complex behavior. We present a novel classification method applicable to any class of deterministic discrete space and time dynamical systems. The method is based on classifying the asymptotic behavior of the average computation time in a given system before entering a loop. We were able to identify a critical region of behavior that corresponds to a phase transition from ordered behavior to chaos across various classes of dynamical systems. To show that our approach can be applied to many different computational systems, we demonstrate the results of classifying cellular automata, Turing machines, and random Boolean networks. Further, we use this method to classify 2D cellular automata to automatically find those with interesting, complex dynamics. We believe that our work can be used to design systems in which complex structures emerge. Also, it can be used to compare vario
We present a measure of local information transfer, derived from an existing averaged information-theoretical measure, namely transfer entropy. Local transfer entropy is used to produce profiles of the information transfer into each spatiotemporal point in a complex system. These spatiotemporal profiles are useful not only as an analytical tool, but also allow explicit investigation of different parameter settings and forms of the transfer entropy metric itself. As an example, local transfer entropy is applied to cellular automata, where it is demonstrated to be a novel method of filtering for coherent structure. More importantly, local transfer entropy provides the first quantitative evidence for the long-held conjecture that the emergent traveling coherent structures known as particles (both gliders and domain walls, which have analogues in many physical processes) are the dominant information transfer agents in cellular automata.
The nature of distributed computation has often been described in terms of the component operations of universal computation: information storage, transfer and modification. We review the first complete framework that quantifies each of these individual information dynamics on a local scale within a system, and describes the manner in which they interact to create non-trivial computation where the whole is greater than the sum of the parts. We describe the application of the framework to cellular automata, a simple yet powerful model of distributed computation. This is an important application, because the framework is the first to provide quantitative evidence for several important conjectures about distributed computation in cellular automata: that blinkers embody information storage, particles are information transfer agents, and particle collisions are information modification events. The framework is also shown to contrast the computations conducted by several well-known cellular automata, highlighting the importance of information coherence in complex computation. The results reviewed here provide important quantitative insights into the fundamental nature of distributed computation and the dynamics of complex systems, as well as impetus for the framework to be applied to the analysis and design of other systems.
This paper presents solutions to Density Classification Task (DCT) using a variant of Cellular Automata (CA) called Programmable Cellular Automata (PCA). The translation property as well as the density preserving property of fundamental CA rules in 1D and 2D, and the advantage of PCA are embedded together to obtain the DCT solution. The advantage of PCA over standard CA is reported. A general 2D DCT of arbitrary shapes and sizes, its applicability and its solution using PCA is newly introduced.
The emergence of complex behaviors in cellular automata is an area that has been widely developed in recent years with the intention to generate and analyze automata that produce space-moving patterns or gliders that interact in a periodic background. Frequently, this type of automata has been found through either an exhaustive search or a meticulous construction of the evolution rule. In this study, the specification of cellular automata with complex behaviors was obtained by utilizing randomly generated specimens. In particular, it proposed that a cellular automaton of $n$ states should be specified at random and then extended to another automaton with a higher number of states so that the original automaton operates as a periodic background where the additional states serve to define the gliders. Moreover, this study presented an explanation of this method. Furthermore, the random way of defining complex cellular automata was studied by using mean-field approximations for various states and local entropy measures. This specification was refined with a genetic algorithm to obtain specimens with a higher degree of complexity. With this methodology, it was possible to generate complex automata with hundreds of states, demonstrating that randomly defined local interactions with multiple states can construct complexity.