Image Convolution-Based Method and Statistical Modelling for Experimental Height Estimations of Laminar to Transition-to-Turbulent Regime Diffusion Flames


Abstract in English

This paper presents an experimental methodology to measure the height of the flame using convolution image processing and statistical analysis. The experimental setup employs a burner with four circularly arranged nozzles. Six different volumetric fuel flows were employed, and flame images were captured from three different visualization planes utilizing a three high-definition camera array, a thermal imaging camera and an image-processing algorithm. The flame height was indirectly measured using pixel quantification and conversion through a reference length. Although the fuel flow was the most significant factor, the visualization plane and the image source were also found to be particularly relevant, since certain flame features were only perceivable depending on the approach. The measurements were compared to different existing theoretical correlations, yielding an overall adjustment ranging from 3.25 to 3.97cm. The present methodology yields an overall statistical tolerance of 1.27 cm and an expanded uncertainty of 0.599 cm. Furthermore, the thermal imaging has revealed a consistent difference in the overall luminous observable flame of 2.54 cm. For this particular burner configuration, correlations were derived by statistical modelling, which explain the flame height fluctuations with an average setting of 97.23%.

Download