Multisolitons for the cubic NLS in 1-d and their stability


Abstract in English

For both the cubic Nonlinear Schrodinger Equation (NLS) as well as the modified Korteweg-de Vries (mKdV) equation in one space dimension we consider the set ${bf M}_N$ of pure $N$-soliton states, and their associated multisoliton solutions. We prove that (i) the set ${bf M}_N$ is a uniformly smooth manifold, and (ii) the ${bf M}_N$ states are uniformly stable in $H^s$, for each $s>-frac12$. One main tool in our analysis is an iterated Backlund transform, which allows us to nonlinearly add a multisoliton to an existing soliton free state (the soliton addition map) or alternatively to remove a multisoliton from a multisoliton state (the soliton removal map). The properties and the regularity of these maps are extensively studied.

Download