Do you want to publish a course? Click here

Topological nanophotonics for photoluminescence control

221   0   0.0 ( 0 )
 Added by Sergey Kruk
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Rare-earth doped nanocrystals are emerging light sources used for many applications in nanotechnology enabled by human ability to control their various optical properties with chemistry and material science. However, one important optical problem -- polarisation of photoluminescence -- remains largely out of control by chemistry methods. Control over photoluminescence polarisation can be gained via coupling of emitters to resonant nanostructures such as optical antennas and metasurfaces. However, the resulting polarization is typically sensitive to position disorder of emitters, which is difficult to mitigate. Recently, new classes of disorder-immune optical systems have been explored within the framework of topological photonics. Here we explore disorder-robust topological arrays of Mie-resonant nanoparticles for polarisation control of photoluminescence of nanocrystals. We demonstrate polarized emission from rare-earth-doped nanocrystals governed by photonic topological edge states supported by zigzag arrays of dielectric resonators. We verify the topological origin of polarised photoluminescence by comparing emission from nanoparticles coupled to topologically trivial and nontrivial arrays of nanoresonators.

rate research

Read More

Recent advancements in computational inverse design have begun to reshape the landscape of structures and techniques available to nanophotonics. Here, we outline a cross section of key developments at the intersection of these two fields: moving from a recap of foundational results to motivation of emerging applications in nonlinear, topological, near-field and on-chip optics.
Freeform optics aims to expand the toolkit of optical elements by allowing for more complex phase geometries beyond rotational symmetry. Complex, asymmetric curvatures are employed to enhance the performance of optical components while minimizing their weight and size. Unfortunately, these asymmetric forms are often difficult to manufacture at the nanoscale with current technologies. Metasurfaces are planar sub-wavelength structures that can control the phase, amplitude, and polarization of incident light, and can thereby mimic complex geometric curvatures on a flat, wavelength-scale thick surface. We present a methodology for designing analogues of freeform optics using a low contrast dielectric metasurface platform for operation at visible wavelengths. We demonstrate a cubic phase plate with a point spread function exhibiting enhanced depth of field over 300 {mu}m along the optical axis with potential for performing metasurface-based white light imaging, and an Alvarez lens with a tunable focal length range of over 2.5 mm with 100 {mu}m of total mechanical displacement. The adaptation of freeform optics to a sub-wavelength metasurface platform allows for the ultimate miniaturization of optical components and offers a scalable route toward implementing near-arbitrary geometric curvatures in nanophotonics.
Modern nonlinear optical materials allow light of one wavelength be efficiently converted into light at another wavelength. However, designing nonlinear optical materials to operate with ultrashort pulses is difficult, because it is necessary to match both the phase velocities and group velocities of the light. Here we show that self-organized nonlinear gratings can be formed with femtosecond pulses propagating through nanophotonic waveguides, providing simultaneous group-velocity matching and quasi-phase-matching for second harmonic generation. We record the first direct microscopy images of photo-induced nonlinear gratings, and demonstrate how these waveguides enable simultaneous $chi^{(2)}$ and $chi^{(3)}$ nonlinear processes, which we utilize to stabilize a laser frequency comb. Finally, we derive the equations that govern self-organized grating formation for femtosecond pulses and explain the crucial role of group-velocity matching. In the future, such nanophotonic waveguides could enable scalable, reconfigurable nonlinear optical systems.
Coherent broadband excitation of plasmons brings ultrafast photonics to the nanoscale. However, to fully leverage this potential for ultrafast nanophotonic applications, the capacity to engineer and control the ultrafast response of a plasmonic system at will is crucial. Here, we develop a framework for systematic control and measurement of ultrafast dynamics of near-field hotspots. We show deterministic design of the coherent response of plasmonic antennas at femtosecond timescales. Exploiting the emerging properties of coupled antenna configurations, we use the calibrated antennas to engineer two sought-after applications of ultrafast plasmonics: a subwavelength resolution phase shaper, and an ultrafast hotspot switch. Moreover, we demonstrate that mixing localized resonances of lossy plasmonic particles is the mechanism behind nanoscale coherent control. This simple, reproducible and scalable approach promises to transform ultrafast plasmonics into a straightforward tool for use in fields as diverse as room temperature quantum optics, nanoscale solid state physics and quantum biology.
All-dielectric nanoantennas have recently opened exciting opportunities for functional nanophotonics, owing to their strong optical resonances along with low material loss in the near-infrared range. Pushing these concepts to the visible range is hindered by a larger absorption coefficient of Si and other high-index semiconductors, thus encouraging the search for alternative dielectrics for nanophotonics. In this paper, we employ bandgap engineering to synthesize hydrogenated amorphous Si nanoparticles (a-Si:H NPs) offering ideal features for functional nanophotonics. We observe significant material loss suppression in a-Si:H NPs in the visible range caused by hydrogenation-induced bandgap renormalization, producing resonant modes in single a-Si:H NPs with Q factors up to ~100, in the visible and near-IR range for the first time. In order to demonstrate light-matter interaction enhancement, we realize highly tunable all-dielectric nanoantennas coupling them to photochromic spiropyran (SP) molecules. We show ~70% reversible all-optical tuning of light scattering at the high-Q resonant mode, along with minor tunability when out of resonance. This remarkable all-optical tuning effect is achieved under a low incident light intensity ~3.8 W/cm2 for UV light and ~1.1*10^2 W/cm2 for green light.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا