Delta-doped b{eta}-Ga2O3 Films With Low FWHM Charge Profile Grown By Metalorganic Vapor-Phase Epitaxy


Abstract in English

We report on low-temperature MOVPE growth of silicon delta-doped b{eta}-Ga2O3 films with low FWHM. The as-grown films are characterized using Secondary-ion mass spectroscopy, Capacitance-Voltage and Hall techniques. SIMS measurements show that surface segregation is the chief cause of large FWHM in MOVPE-grown films. The surface segregation coefficient (R) is observed to reduce with reduction in the growth temperature. Films grown at 600 {deg}C show an electron concentration of 9.7 x 1012 cm-2 and a FWHM of 3.2 nm. High resolution scanning/transmission electron microscopy of the epitaxial film did not reveal any significant observable degradation in crystal quality of the delta sheet and surrounding regions. Hall measurements of delta-doped film on Fe-doped substrate showed a sheet charge density of 6.1 x 1012 cm-2 and carrier mobility of 83 cm2/V. s. Realization of sharp delta doping profiles in MOVPE-grown b{eta}-Ga2O3 is promising for high performance device applications.

Download