Do you want to publish a course? Click here

Development and Assessment of a Nearly Autonomous Management and Control System for Advanced Reactors

133   0   0.0 ( 0 )
 Added by Linyu Lin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper develops a Nearly Autonomous Management and Control (NAMAC) system for advanced reactors. The development process of NAMAC is characterized by a three layer-layer architecture: knowledge base, the Digital Twin (DT) developmental layer, and the NAMAC operational layer. The DT is described as a knowledge acquisition system from the knowledge base for intended uses in the NAMAC system. A set of DTs with different functions is developed with acceptable performance and assembled according to the NAMAC operational workflow to furnish recommendations to operators. To demonstrate the capability of the NAMAC system, a case study is designed, where a baseline NAMAC is implemented for operating a simulator of the Experimental Breeder Reactor II during a single loss of flow accident. When NAMAC is operated in the training domain, it can provide reasonable recommendations that prevent the peak fuel centerline temperature from exceeding a safety criterion.



rate research

Read More

The Nearly Autonomous Management and Control System (NAMAC) is a comprehensive control system that assists plant operations by furnishing control recommendations to operators in a broad class of situations. This study refines a NAMAC system for making reasonable recommendations during complex loss-of-flow scenarios with a validated Experimental Breeder Reactor II simulator, digital twins improved by machine-learning algorithms, a multi-attribute decision-making scheme, and a discrepancy checker for identifying unexpected recommendation effects. We assessed the performance of each NAMAC component, while we demonstrated and evaluated the capability of NAMAC in a class of loss-of-flow scenarios.
Building a new generation of fission reactors in the United States presents many technical and regulatory challenges. One important challenge is the need to share and present results from new high-fidelity, high-performance simulations in an easily usable way. Since modern multiscale, multi-physics simulations can generate petabytes of data, they will require the development of new techniques and methods to reduce the data to familiar quantities of interest (e.g., pin powers, temperatures) with a more reasonable resolution and size. Furthermore, some of the results from these simulations may be new quantities for which visualization and analysis techniques are not immediately available in the community and need to be developed. This paper describes a new system for managing high-performance simulation results in a domain-specific way that naturally exposes quantities of interest for light water and sodium-cooled fast reactors. It describes requirements to build such a system and the technical challenges faced in its development at all levels (simulation, user interface, etc.). An example comparing results from two different simulation suites for a single assembly in a light-water reactor is presented, along with a detailed discussion of the systems requirements and design.
59 - Linyu Lin , Han Bao , Nam Dinh 2021
A nearly autonomous management and control (NAMAC) system is designed to furnish recommendations to operators for achieving particular goals based on NAMACs knowledge base. As a critical component in a NAMAC system, digital twins (DTs) are used to extract information from the knowledge base to support decision-making in reactor control and management during all modes of plant operations. With the advancement of artificial intelligence and data-driven methods, machine learning algorithms are used to build DTs of various functions in the NAMAC system. To evaluate the uncertainty of DTs and its impacts on the reactor digital instrumentation and control systems, uncertainty quantification (UQ) and software risk analysis is needed. As a comprehensive overview of prior research and a starting point for new investigations, this study selects and reviews relevant UQ techniques and software hazard and software risk analysis methods that may be suitable for DTs in the NAMAC system.
85 - Carlos M. Correia 2018
Geared by the increasing need for enhanced performance, both optical and computational, new dynamic control laws have been researched in recent years for next generation adaptive optics systems on current 10 m-class and extremely large telescopes up to 40 m. We provide an overview of these developments and point out prospects to making such controllers drive actual systems on-sky.
114 - Seongjin Choi 2021
Originally, the decision and control of the lane change of the vehicle were on the human driver. In previous studies, the decision-making of lane-changing of the human drivers was mainly used to increase the individuals benefit. However, the lane-changing behavior of these human drivers can sometimes have a bad influence on the overall traffic flow. As technology for autonomous vehicles develop, lane changing action as well as lane changing decision making fall within the control category of autonomous vehicles. However, since many of the current lane-changing decision algorithms of autonomous vehicles are based on the human driver model, it is hard to know the potential traffic impact of such lane change. Therefore, in this study, we focused on the decision-making of lane change considering traffic flow, and accordingly, we study the lane change control system considering the whole traffic flow. In this research, the lane change control system predicts the future traffic situation through the cell transition model, one of the most popular macroscopic traffic simulation models, and determines the change probability of each lane that minimizes the total time delay through the genetic algorithm. The lane change control system then conveys the change probability to this vehicle. In the macroscopic simulation result, the proposed control system reduced the overall travel time delay. The proposed system is applied to microscopic traffic simulation, the oversaturated freeway traffic flow algorithm (OFFA), to evaluate the potential performance when it is applied to the actual traffic system. In the traffic flow-density, the maximum traffic flow has been shown to be increased, and the points in the congestion area have also been greatly reduced. Overall, the time required for individual vehicles was reduced.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا