No Arabic abstract
Many interesting experimental systems, such as cavity QED or central spin models, involve global coupling to a single harmonic mode. Out-of-equilibrium, it remains unclear under what conditions localized phases survive such global coupling. We study energy-dependent localization in the disordered Ising model with transverse and longitudinal fields coupled globally to a $d$-level system (qudit). Strikingly, we discover an inverted mobility edge, where high energy states are localized while low energy states are delocalized. Our results are supported by shift-and-invert eigenstate targeting and Krylov time evolution up to $L=13$ and $18$ respectively. We argue for a critical energy of the localization phase transition which scales as $E_c propto L^{1/2}$, consistent with finite size numerics. We also show evidence for a reentrant MBL phase at even lower energies despite the presence of strong effects of the central mode in this regime. Similar results should occur in the central spin-$S$ problem at large $S$ and in certain models of cavity QED.
Thermalization of random-field Heisenberg spin chain is probed by time evolution of density correlation functions. Studying the impacts of average energies of initial product states on dynamics of the system, we provide arguments in favor of the existence of a mobility edge in the large system-size limit.
We uncover a new non-ergodic phase, distinct from the many-body localized (MBL) phase, in a disordered two-leg ladder of interacting hardcore bosons. The dynamics of this emergent phase, which has no single-particle analog and exists only for strong disorder and finite interaction, is determined by the many-body configuration of the initial state. Remarkably, this phase features the $textit{coexistence}$ of localized and extended many-body states at fixed energy density and thus does not exhibit a many-body mobility edge, nor does it reduce to a model with a single-particle mobility edge in the noninteracting limit. We show that eigenstates in this phase can be described in terms of interacting emergent Ising spin degrees of freedom (singlons) suspended in a mixture with inert charge degrees of freedom (doublons and holons), and thus dub it a $textit{mobility emulsion}$ (ME). We argue that grouping eigenstates by their doublon/holon density reveals a transition between localized and extended states that is invisible as a function of energy density. We further demonstrate that the dynamics of the system following a quench may exhibit either thermalizing or localized behavior depending on the doublon/holon density of the initial product state. Intriguingly, the ergodicity of the ME is thus tuned by the initial state of the many-body system. These results establish a new paradigm for using many-body configurations as a tool to study and control the MBL transition. The ME phase may be observable in suitably prepared cold atom optical lattices.
We investigate the phase transition between an ergodic and a many-body localized phase in infinite anisotropic spin-$1/2$ Heisenberg chains with binary disorder. Starting from the Neel state, we analyze the decay of antiferromagnetic order $m_s(t)$ and the growth of entanglement entropy $S_{textrm{ent}}(t)$ during unitary time evolution. Near the phase transition we find that $m_s(t)$ decays exponentially to its asymptotic value $m_s(infty) eq 0$ in the localized phase while the data are consistent with a power-law decay at long times in the ergodic phase. In the localized phase, $m_s(infty)$ shows an exponential sensitivity on disorder with a critical exponent $ usim 0.9$. The entanglement entropy in the ergodic phase grows subballistically, $S_{textrm{ent}}(t)sim t^alpha$, $alphaleq 1$, with $alpha$ varying continuously as a function of disorder. Exact diagonalizations for small systems, on the other hand, do not show a clear scaling with system size and attempts to determine the phase boundary from these data seem to overestimate the extent of the ergodic phase.
The Loschmidt echo, defined as the overlap between quantum wave function evolved with different Hamiltonians, quantifies the sensitivity of quantum dynamics to perturbations and is often used as a probe of quantum chaos. In this work we consider the behavior of the Loschmidt echo in the many body localized phase, which is characterized by emergent local integrals of motion, and provides a generic example of non-ergodic dynamics. We demonstrate that the fluctuations of the Loschmidt echo decay as a power law in time in the many-body localized phase, in contrast to the exponential decay in few-body ergodic systems. We consider the spin-echo generalization of the Loschmidt echo, and argue that the corresponding correlation function saturates to a finite value in localized systems. Slow, power-law decay of fluctuations of such spin-echo-type overlap is related to the operator spreading and is present only in the many-body localized phase, but not in a non-interacting Anderson insulator. While most of the previously considered probes of dephasing dynamics could be understood by approximating physical spin operators with local integrals of motion, the Loschmidt echo and its generalizations crucially depend on the full expansion of the physical operators via local integrals of motion operators, as well as operators which flip local integrals of motion. Hence, these probes allow to get insights into the relation between physical operators and local integrals of motion, and access the operator spreading in the many-body localized phase.
Isolated quantum systems with quenched randomness exhibit many-body localization (MBL), wherein they do not reach local thermal equilibrium even when highly excited above their ground states. It is widely believed that individual eigenstates capture this breakdown of thermalization at finite size. We show that this belief is false in general and that a MBL system can exhibit the eigenstate properties of a thermalizing system. We propose that localized approximately conserved operators (l$^*$-bits) underlie localization in such systems. In dimensions $d>1$, we further argue that the existing MBL phenomenology is unstable to boundary effects and gives way to l$^*$-bits. Physical consequences of l$^*$-bits include the possibility of an eigenstate phase transition within the MBL phase unrelated to the dynamical transition in $d=1$ and thermal eigenstates at all parameters in $d>1$. Near-term experiments in ultra-cold atomic systems and numerics can probe the dynamics generated by boundary layers and emergence of l$^*$-bits.