Deep Historical Borrowing Framework to Prospectively and Simultaneously Synthesize Control Information in Confirmatory Clinical Trials with Multiple Endpoints


Abstract in English

In current clinical trial development, historical information is receiving more attention as providing value beyond sample size calculation. Meta-analytic-predictive (MAP) priors and robust MAP priors have been proposed for prospectively borrowing historical data on a single endpoint. To simultaneously synthesize control information from multiple endpoints in confirmatory clinical trials, we propose to approximate posterior probabilities from a Bayesian hierarchical model and estimate critical values by deep learning to construct pre-specified decision functions before the trial conduct. Simulation studies and a case study demonstrate that our method additionally preserves power, and has a satisfactory performance under prior-data conflict.

Download