No Arabic abstract
Now that conventional weakly interacting massive particle (WIMP) dark matter searches are approaching the neutrino floor, there has been a resurgence of interest in detectors with sensitivity to nuclear recoil directions. A large-scale directional detector is attractive in that it would have sensitivity below the neutrino floor, be capable of unambiguously establishing the galactic origin of a purported dark matter signal, and could serve a dual purpose as a neutrino observatory. We present the first detailed analysis of a 1000 m$^3$-scale detector capable of measuring a directional nuclear recoil signal at low energies. We propose a modular and multi-site observatory consisting of time projection chambers (TPCs) filled with helium and SF$_6$ at atmospheric pressure. Depending on the TPC readout technology, 10-20 helium recoils above 6 keVr or only 3-4 recoils above 20 keVr would suffice to distinguish a 10 GeV WIMP signal from the solar neutrino background. High-resolution charge readout also enables powerful electron background rejection capabilities well below 10 keV. We detail background and site requirements at the 1000 m$^3$-scale, and identify materials that require improved radiopurity. The final experiment, which we name CYGNUS-1000, will be able to observe 10-40 neutrinos from the Sun, depending on the final energy threshold. With the same exposure, the sensitivity to spin independent cross sections will extend into presently unexplored sub-10 GeV parameter space. For spin dependent interactions, already a 10 m$^3$-scale experiment could compete with upcoming generation-two detectors, but CYGNUS-1000 would improve upon this considerably. Larger volumes would bring sensitivity to neutrinos from an even wider range of sources, including galactic supernovae, nuclear reactors, and geological processes.
We propose to achieve the proof-of-principle of the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Each of the technological challenges described in [1,2] will be targeted and hopefully solved by the use of the latest experimental developments and profiting from the low background environment provided by the LNGS underground site. The first phase will focus on the graphene technology for a tritium target and the demonstration of TES microcalorimetry with an energy resolution of better than 0.05 eV for low energy electrons. These technologies will be evaluated using the PTOLEMY prototype, proposed for underground installation, using precision HV controls to step down the kinematic energy of endpoint electrons to match the calorimeter dynamic range and rate capabilities. The second phase will produce a novel implementation of the EM filter that is scalable to the full target size and which demonstrates intrinsic triggering capability for selecting endpoint electrons. Concurrent with the CNB program, we plan to exploit and develop the unique properties of graphene to implement an intermediate program for direct directional detection of MeV dark matter [3,4]. This program will evaluate the radio-purity and scalability of the graphene fabrication process with the goal of using recently identified ultra-high radio-purity CO2 sources. The direct detection of the CNB is a snapshot of early universe dynamics recorded by the thermal relic neutrino yield taken at a time that predates the epochs of Big Bang Nucleosynthesis, the Cosmic Microwave Background and the recession of galaxies (Hubble Expansion). Big Bang neutrinos are believed to have a central role in the evolution of the Universe and a direct measurement with PTOLEMY will unequivocally establish the extent to which these predictions match present-day neutrino densities.
A first measurement of neutrinos from the CNO fusion cycle in the Sun would allow a resolution to the current solar metallicity problem. Detection of these low-energy neutrinos requires a low-threshold detector, while discrimination from radioactive backgrounds in the region of interest is significantly enhanced via directional sensitivity. This combination can be achieved in a water-based liquid scintillator target, which offers enhanced energy resolution beyond a standard water Cherenkov detector. We study the sensitivity of such a detector to CNO neutrinos under various detector and background scenarios, and draw conclusions about the requirements for such a detector to successfully measure the CNO neutrino flux. A detector designed to measure CNO neutrinos could also achieve a few-percent measurement of pep neutrinos.
We present results from the first measurement of axial range components of fiducialized neutron induced nuclear recoil tracks using the DRIFT directional dark matter detector. Nuclear recoil events are fiducialized in the DRIFT experiment using temporal charge carrier separations between different species of anions in 30:10:1 Torr of CS$_2$:CF$_4$:O$_2$ gas mixture. For this measurement, neutron-induced nuclear recoil tracks were generated by exposing the detector to $^{252}$Cf source from different directions. Using these events, the sensitivity of the detector to the expected axial directional signatures were investigated as the neutron source was moved from one detector axis to another. Results obtained from these measurements show clear sensitivity of the DRIFT detector to the axial directional signatures in this fiducialization gas mode.
The Cryogenic Dark Matter Search (CDMS II) experiment aims to detect dark matter particles that elastically scatter from nuclei in semiconductor detectors. The resulting nuclear-recoil energy depositions are detected by ionization and phonon sensors. Neutrons produce a similar spectrum of low-energy nuclear recoils in such detectors, while most other backgrounds produce electron recoils. The absolute energy scale for nuclear recoils is necessary to interpret results correctly. The energy scale can be determined in CDMS II silicon detectors using neutrons incident from a broad-spectrum $^{252}$Cf source, taking advantage of a prominent resonance in the neutron elastic scattering cross section of silicon at a recoil (neutron) energy near 20 (182) keV. Results indicate that the phonon collection efficiency for nuclear recoils is $4.8^{+0.7}_{-0.9}$% lower than for electron recoils of the same energy. Comparisons of the ionization signals for nuclear recoils to those measured previously by other groups at higher electric fields indicate that the ionization collection efficiency for CDMS II silicon detectors operated at $sim$4 V/cm is consistent with 100% for nuclear recoils below 20 keV and gradually decreases for larger energies to $sim$75% at 100 keV. The impact of these measurements on previously published CDMS II silicon results is small.
We present the first detailed simulations of the head-tail effect relevant to directional Dark Matter searches. Investigations of the location of the majority of the ionization charge as being either at the beginning half (tail) or at the end half (head) of the nuclear recoil track were performed for carbon and sulphur recoils in 40 Torr negative ion carbon disulfide and for fluorine recoils in 100 Torr carbon tetrafluoride. The SRIM simulation program was used, together with a purpose-written Monte Carlo generator, to model production of ionizing pairs, diffusion and basic readout geometries relevant to potential real detector scenarios, such as under development for the DRIFT experiment. The results clearly indicate the existence of a head-tail track asymmetry but with a magnitude critically influenced by two competing factors: the nature of the stopping power and details of the range straggling. The former tends to result in the tail being greater than the head and the latter the reverse.