Do you want to publish a course? Click here

Collapsing geometry with Ricci curvature bounded below and Ricci flow smoothing

114   0   0.0 ( 0 )
 Added by Shaosai Huang
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We survey some recent developments in the study of collapsing Riemannian manifolds with Ricci curvature bounded below, especially the locally bounded Ricci covering geometry and the Ricci flow smoothing techniques. We then prove that if a Calabi-Yau manifold is sufficiently volume collapsed with bounded diameter and sectional curvature, then it admits a Ricci-flat Kahler metrictogether with a compatible pure nilpotent Killing structure: this is related to an open question of Cheeger, Fukaya and Gromov.



rate research

Read More

68 - Vitali Kapovitch 2004
We give a proof of the fact that the upper and the lower sectional curvature bounds of a complete manifold vary at a bounded rate under the Ricci flow.
We establish some important inequalities under a lower weighted Ricci curvature bound on Finsler manifolds. Firstly, we establish a relative volume comparison of Bishop-Gromov type. As one of the applications, we obtain an upper bound for volumes of the Finsler manifolds. Further, when the S-curvature is bounded on the whole manifold, we obtain a theorem of Bonnet-Myers type on Finsler manifolds. Finally, we obtain a sharp Poincar{e}-Lichnerowicz inequality by using integrated Bochner inequality, from which we obtain a sharp lower bound for the first eigenvalue on the Finsler manifolds.
104 - Yuanqing Ma , Bing Wang 2021
Consider a Riemannian manifold $(M^{m}, g)$ whose volume is the same as the standard sphere $(S^{m}, g_{round})$. If $p>frac{m}{2}$ and $int_{M} left{ Rc-(m-1)gright}_{-}^{p} dv$ is sufficiently small, we show that the normalized Ricci flow initiated from $(M^{m}, g)$ will exist immortally and converge to the standard sphere. The choice of $p$ is optimal.
We study collapsed manifolds with Ricci bounded covering geometry i.e., Ricci curvature is bounded below and the Riemannian universal cover is non-collapsed or consists of uniform Reifenberg points. Via Ricci flows techniques, we partially extend the nilpotent structural results of Cheeger-Fukaya-Gromov, on collapsed manifolds with (sectional curvature) local bounded covering geometry, to manifolds with (global) Ricci boundedcovering geometry.
99 - Richard H. Bamler 2016
In this paper we prove convergence and compactness results for Ricci flows with bounded scalar curvature and entropy. More specifically, we show that Ricci flows with bounded scalar curvature converge smoothly away from a singular set of codimension $geq 4$. We also establish a general form of the Hamilton-Tian Conjecture, which is even true in the Riemannian case. These results are based on a compactness theorem for Ricci flows with bounded scalar curvature, which states that any sequence of such Ricci flows converges, after passing to a subsequence, to a metric space that is smooth away from a set of codimension $geq 4$. In the course of the proof, we will also establish $L^{p < 2}$-curvature bounds on time-slices of such flows.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا