No Arabic abstract
We study the problem of efficiently refuting the k-colorability of a graph, or equivalently certifying a lower bound on its chromatic number. We give formal evidence of average-case computational hardness for this problem in sparse random regular graphs, showing optimality of a simple spectral certificate. This evidence takes the form of a computationally-quiet planting: we construct a distribution of d-regular graphs that has significantly smaller chromatic number than a typical regular graph drawn uniformly at random, while providing evidence that these two distributions are indistinguishable by a large class of algorithms. We generalize our results to the more general problem of certifying an upper bound on the maximum k-cut. This quiet planting is achieved by minimizing the effect of the planted structure (e.g. colorings or cuts) on the graph spectrum. Specifically, the planted structure corresponds exactly to eigenvectors of the adjacency matrix. This avoids the pushout effect of random matrix theory, and delays the point at which the planting becomes visible in the spectrum or local statistics. To illustrate this further, we give similar results for a Gaussian analogue of this problem: a quiet version of the spiked model, where we plant an eigenspace rather than adding a generic low-rank perturbation. Our evidence for computational hardness of distinguishing two distributions is based on three different heuristics: stability of belief propagation, the local statistics hierarchy, and the low-degree likelihood ratio. Of independent interest, our results include general-purpose bounds on the low-degree likelihood ratio for multi-spiked matrix models, and an improved low-degree analysis of the stochastic block model.
We give an efficient algorithm to strongly refute emph{semi-random} instances of all Boolean constraint satisfaction problems. The number of constraints required by our algorithm matches (up to polylogarithmic factors) the best-known bounds for efficient refutation of fully random instances. Our main technical contribution is an algorithm to strongly refute semi-random instances of the Boolean $k$-XOR problem on $n$ variables that have $widetilde{O}(n^{k/2})$ constraints. (In a semi-random $k$-XOR instance, the equations can be arbitrary and only the right-hand sides are random.) One of our key insights is to identify a simple combinatorial property of random XOR instances that makes spectral refutation work. Our approach involves taking an instance that does not satisfy this property (i.e., is emph{not} pseudorandom) and reducing it to a partitioned collection of $2$-XOR instances. We analyze these subinstances using a carefully chosen quadratic form as a proxy, which in turn is bounded via a combination of spectral methods and semidefinite programming. The analysis of our spectral bounds relies only on an off-the-shelf matrix Bernstein inequality. Even for the purely random case, this leads to a shorter proof compared to the ones in the literature that rely on problem-specific trace-moment computations.
We study the problem of approximating the value of a Unique Game instance in the streaming model. A simple count of the number of constraints divided by $p$, the alphabet size of the Unique Game, gives a trivial $p$-approximation that can be computed in $O(log n)$ space. Meanwhile, with high probability, a sample of $tilde{O}(n)$ constraints suffices to estimate the optimal value to $(1+epsilon)$ accuracy. We prove that any single-pass streaming algorithm that achieves a $(p-epsilon)$-approximation requires $Omega_epsilon(sqrt{n})$ space. Our proof is via a reduction from lower bounds for a communication problem that is a $p$-ary variant of the Boolean Hidden Matching problem studied in the literature. Given the utility of Unique Games as a starting point for reduction to other optimization problems, our strong hardness for approximating Unique Games could lead to downemph{stream} hardness results for streaming approximability for other CSP-like problems.
In this work, we show the first worst-case to average-case reduction for the classical $k$-SUM problem. A $k$-SUM instance is a collection of $m$ integers, and the goal of the $k$-SUM problem is to find a subset of $k$ elements that sums to $0$. In the average-case version, the $m$ elements are chosen uniformly at random from some interval $[-u,u]$. We consider the total setting where $m$ is sufficiently large (with respect to $u$ and $k$), so that we are guaranteed (with high probability) that solutions must exist. Much of the appeal of $k$-SUM, in particular connections to problems in computational geometry, extends to the total setting. The best known algorithm in the average-case total setting is due to Wagner (following the approach of Blum-Kalai-Wasserman), and achieves a run-time of $u^{O(1/log k)}$. This beats the known (conditional) lower bounds for worst-case $k$-SUM, raising the natural question of whether it can be improved even further. However, in this work, we show a matching average-case lower-bound, by showing a reduction from worst-case lattice problems, thus introducing a new family of techniques into the field of fine-grained complexity. In particular, we show that any algorithm solving average-case $k$-SUM on $m$ elements in time $u^{o(1/log k)}$ will give a super-polynomial improvement in the complexity of algorithms for lattice problems.
We study the complexity of Boolean constraint satisfaction problems (CSPs) when the assignment must have Hamming weight in some congruence class modulo M, for various choices of the modulus M. Due to the known classification of tractable Boolean CSPs, this mainly reduces to the study of three cases: 2-SAT, HORN-SAT, and LIN-2 (linear equations mod 2). We classify the moduli M for which these respective problems are polynomial time solvable, and when they are not (assuming the ETH). Our study reveals that this modular constraint lends a surprising richness to these classic, well-studied problems, with interesting broader connections to complexity theory and coding theory. The HORN-SAT case is connected to the covering complexity of polynomials representing the NAND function mod M. The LIN-2 case is tied to the sparsity of polynomials representing the OR function mod M, which in turn has connections to modular weight distribution properties of linear codes and locally decodable codes. In both cases, the analysis of our algorithm as well as the hardness reduction rely on these polynomial representations, highlighting an interesting algebraic common ground between hard cases for our algorithms and the gadgets which show hardness. These new complexity measures of polynomial representations merit further study. The inspiration for our study comes from a recent work by Nagele, Sudakov, and Zenklusen on submodular minimization with a global congruence constraint. Our algorithm for HORN-SAT has strong similarities to their algorithm, and in particular identical kind of set systems arise in both cases. Our connection to polynomial representations leads to a simpler analysis of such set systems, and also sheds light on (but does not resolve) the complexity of submodular minimization with a congruency requirement modulo a composite M.
Random constraint satisfaction problems (CSPs) are known to exhibit threshold phenomena: given a uniformly random instance of a CSP with $n$ variables and $m$ clauses, there is a value of $m = Omega(n)$ beyond which the CSP will be unsatisfiable with high probability. Strong refutation is the problem of certifying that no variable assignment satisfies more than a constant fraction of clauses; this is the natural algorithmic problem in the unsatisfiable regime (when $m/n = omega(1)$). Intuitively, strong refutation should become easier as the clause density $m/n$ grows, because the contradictions introduced by the random clauses become more locally apparent. For CSPs such as $k$-SAT and $k$-XOR, there is a long-standing gap between the clause density at which efficient strong refutation algorithms are known, $m/n ge widetilde O(n^{k/2-1})$, and the clause density at which instances become unsatisfiable with high probability, $m/n = omega (1)$. In this paper, we give spectral and sum-of-squares algorithms for strongly refuting random $k$-XOR instances with clause density $m/n ge widetilde O(n^{(k/2-1)(1-delta)})$ in time $exp(widetilde O(n^{delta}))$ or in $widetilde O(n^{delta})$ rounds of the sum-of-squares hierarchy, for any $delta in [0,1)$ and any integer $k ge 3$. Our algorithms provide a smooth transition between the clause density at which polynomial-time algorithms are known at $delta = 0$, and brute-force refutation at the satisfiability threshold when $delta = 1$. We also leverage our $k$-XOR results to obtain strong refutation algorithms for SAT (or any other Boolean CSP) at similar clause densities. Our algorithms match the known sum-of-squares lower bounds due to Grigoriev and Schonebeck, up to logarithmic factors. Additionally, we extend our techniques to give new results for certifying upper bounds on the injective tensor norm of random tensors.