Do you want to publish a course? Click here

Privacy Intelligence: A Survey on Image Privacy in Online Social Networks

98   0   0.0 ( 0 )
 Added by Chi Liu Mr
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Image sharing on online social networks (OSNs) has become an indispensable part of daily social activities, but it has also led to an increased risk of privacy invasion. The recent image leaks from popular OSN services and the abuse of personal photos using advanced algorithms (e.g. DeepFake) have prompted the public to rethink individual privacy needs in OSN image sharing. However, OSN image privacy itself is quite complicated, and solutions currently in place for privacy management in reality are insufficient to provide personalized, accurate and flexible privacy protection. A more intelligent environment for privacy-friendly OSN image sharing is in demand. To fill the gap, we contribute a survey of privacy intelligence that targets modern privacy issues in dynamic OSN image sharing from a user-centric perspective. Specifically, we present a definition and a taxonomy of OSN image privacy, and a high-level privacy analysis framework based on the lifecycle of OSN image sharing. The framework consists of three stages with different principles of privacy by design. At each stage, we identify typical user behaviors in OSN image sharing and the privacy issues associated with these behaviors. Then a systematic review on the representative intelligent solutions targeting those privacy issues is conducted, also in a stage-based manner. The resulting analysis describes an intelligent privacy firewall for closed-loop privacy management. We also discuss the challenges and future directions in this area.



rate research

Read More

Social networking sites supporting federated identities offer a convenient and increasingly popular mechanism for cross-site authentication. Unfortunately, they also exacerbate many privacy and tracking risks. We propose Crypto-Book, an anonymizing layer enabling cross-site authentication while reducing these risks. Crypto-Book relies on a set of independently managed servers that collectively assign each social network identity a public/private keypair. Only an identitys owner learns all the private key shares, and can therefore construct the private key, while all participants can obtain any users public key, even if the corresponding private key has yet to be retrieved. Having obtained an appropriate key set, a user can then leverage anonymous authentication techniques such as linkable ring signatures to log into third-party web sites while preserving privacy. We have implemented a prototype of Crypto-Book and demonstrate its use with three applications: a Wiki system, an anonymous group communication system, and a whistleblower submission system. Our results show that for anonymity sets of size 100, Crypto-Book login takes 0.56s for signature generation by the client, 0.38s for signature verification on the server, and requires 5.6KB of communication bandwidth.
In recent years, concerns about location privacy are increasing with the spread of location-based services (LBSs). Many methods to protect location privacy have been proposed in the past decades. Especially, perturbation methods based on Geo-Indistinguishability (Geo-I), which randomly perturb a true location to a pseudolocation, are getting attention due to its strong privacy guarantee inherited from differential privacy. However, Geo-I is based on the Euclidean plane even though many LBSs are based on road networks (e.g. ride-sharing services). This causes unnecessary noise and thus an insufficient tradeoff between utility and privacy for LBSs on road networks. To address this issue, we propose a new privacy notion, Geo-Graph-Indistinguishability (GG-I), for locations on a road network to achieve a better tradeoff. We propose Graph-Exponential Mechanism (GEM), which satisfies GG-I. Moreover, we formalize the optimization problem to find the optimal GEM in terms of the tradeoff. However, the computational complexity of a naive method to find the optimal solution is prohibitive, so we propose a greedy algorithm to find an approximate solution in an acceptable amount of time. Finally, our experiments show that our proposed mechanism outperforms a Geo-Is mechanism with respect to the tradeoff.
Additive manufacturing (AM) is growing as fast as anyone can imagine, and it is now a multi-billion-dollar industry. AM becomes popular in a variety of sectors, such as automotive, aerospace, biomedical, and pharmaceutical, for producing parts/ components/ subsystems. However, current AM technologies can face vast risks of security issues and privacy loss. For the security of AM process, many researchers are working on the defense mechanism to countermeasure such security concerns and finding efficient ways to eliminate those risks. Researchers have also been conducting experiments to establish a secure framework for the users privacy and security components. This survey consists of four sections. In the first section, we will explore the relevant limitations of additive manufacturing in terms of printing capability, security, and possible solutions. The second section will present different kinds of attacks on AM and their effects. The next part will analyze and discuss the mechanisms and frameworks for access control and authentication for AM devices. The final section examines the security issues in various industrial sectors and provides the observations on the security of the additive manufacturing process.
The increased adoption of Artificial Intelligence (AI) presents an opportunity to solve many socio-economic and environmental challenges; however, this cannot happen without securing AI-enabled technologies. In recent years, most AI models are vulnerable to advanced and sophisticated hacking techniques. This challenge has motivated concerted research efforts into adversarial AI, with the aim of developing robust machine and deep learning models that are resilient to different types of adversarial scenarios. In this paper, we present a holistic cyber security review that demonstrates adversarial attacks against AI applications, including aspects such as adversarial knowledge and capabilities, as well as existing methods for generating adversarial examples and existing cyber defence models. We explain mathematical AI models, especially new variants of reinforcement and federated learning, to demonstrate how attack vectors would exploit vulnerabilities of AI models. We also propose a systematic framework for demonstrating attack techniques against AI applications and reviewed several cyber defences that would protect AI applications against those attacks. We also highlight the importance of understanding the adversarial goals and their capabilities, especially the recent attacks against industry applications, to develop adaptive defences that assess to secure AI applications. Finally, we describe the main challenges and future research directions in the domain of security and privacy of AI technologies.
An increasing number of todays social interactions occurs using online social media as communication channels. Some online social networks have become extremely popular in the last decade. They differ among themselves in the character of the service they provide to online users. For instance, Facebook can be seen mainly as a platform for keeping in touch with close friends and relatives, Twitter is used to propagate and receive news, LinkedIn facilitates the maintenance of professional contacts, Flickr gathers amateurs and professionals of photography, etc. Albeit different, all these online platforms share an ingredient that pervades all their applications. There exists an underlying social network that allows their users to keep in touch with each other and helps to engage them in common activities or interactions leading to a better fulfillment of the services purposes. This is the reason why these platforms share a good number of functionalities, e.g., personal communication channels, broadcasted status updates, easy one-step information sharing, news feeds exposing broadcasted content, etc. As a result, online social networks are an interesting field to study an online social behavior that seems to be generic among the different online services. Since at the bottom of these services lays a network of declared relations and the basic interactions in these platforms tend to be pairwise, a natural methodology for studying these systems is provided by network science. In this chapter we describe some of the results of research studies on the structure, dynamics and social activity in online social networks. We present them in the interdisciplinary context of network science, sociological studies and computer science.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا