Do you want to publish a course? Click here

Tracking Brownian motion in three dimensions and characterization of individual nanoparticles using a fiber-based high-finesse microcavity

66   0   0.0 ( 0 )
 Added by Larissa Kohler
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dynamics of nanosystems in solution contain a wealth of information with relevance for diverse fields ranging from materials science to biology and biomedical applications. When nanosystems are marked with fluorophores or strong scatterers, it is possible to track their position and reveal internal motion with high spatial and temporal resolution. However, markers can be toxic, expensive, or change the objects intrinsic properties. Here, we simultaneously measure dispersive frequency shifts of three transverse modes of a high-finesse microcavity to obtain the three-dimensional path of unlabeled SiO$_2$ nanospheres with $300$$mathrm{mu}$s temporal and down to $8$nm spatial resolution. This allows us to quantitatively determine properties such as the polarizability, hydrodynamic radius, and effective refractive index. The fiber-based cavity is integrated in a direct-laser-written microfluidic device that enables the precise control of the fluid with ultra-small sample volumes. Our approach enables quantitative nanomaterial characterization and the analysis of biomolecular motion at high bandwidth.



rate research

Read More

Confining a laser field between two high reflectivity mirrors of a high-finesse cavity can increase the probability of a given cavity photon to be scattered by an atom traversing the confined photon mode. This enhanced coupling between light and atoms is successfully employed in cavity quantum electrodynamics experiments and led to a very prolific research in quantum optics. The idea of extending such experiments to sub-wavelength sized nanomechanical systems has been recently proposed in the context of optical cavity cooling. Here we present an experiment involving a single nanorod consisting of about 10^9 atoms precisely positioned to plunge into the confined mode of a miniature high finesse Fabry-Perot cavity. We show that the optical transmission of the cavity is affected not only by the static position of the nanorod but also by its vibrational fluctuation. While an imprint of the vibration dynamics is directly detected in the optical transmission, back-action of the light field is also anticipated to quench the nanorod Brownian motion. This experiment shows the first step towards optical cavity controlled dynamics of mechanical nanostructures and opens up new perspectives for sensing and manipulation of optomechanical nanosystems.
We have demonstrated a 165 micron oblate spheroidal microcavity with free spectral range 383.7 GHz (3.06nm), resonance bandwidth 25 MHz (Q ~ 10^7) at 1550nm, and finesse F > 10^4. The highly oblate spheroidal dielectric microcavity combines very high Q-factor, typical of microspheres, with vastly reduced number of excited whispering-gallery (WG) modes (by two orders of magnitude). The very large free spectral range in the novel microcavity - few hundred instead of few GigaHertz in typical microspheres - is desirable for applications in spectral analysis, narrow-linewidth optical and RF oscillators, and cavity QED.
Ultrasensitive optical detection of nanometer-scaled particles is highly desirable for applications in early-stage diagnosis of human diseases, environmental monitoring, and homeland security, but remains extremely difficult due to ultralow polarizabilities of small-sized, low-index particles. Optical whispering-gallery-mode microcavities, which can enhance significantly the light-matter interaction, have emerged as promising platforms for label-free detection of nanoscale objects. Different from the conventional whispering-gallery-mode sensing relying on the reactive (i.e., dispersive) interaction, here we propose and demonstrate to detect single lossy nanoparticles using the dissipative interaction in a high-$Q$ toroidal microcavity. In the experiment, detection of single gold nanorods in an aqueous environment is realized by monitoring simultaneously the linewidth change and shift of the cavity mode. The experimental result falls within the theoretical prediction. Remarkably, the reactive and dissipative sensing methods are evaluated by setting the probe wavelength on and off the surface plasmon resonance to tune the absorption of nanorods, which demonstrates clearly the great potential of the dissipative sensing method to detect lossy nanoparticles. Future applications could also combine the dissipative and reactive sensing methods, which may provide better characterizations of nanoparticles.
178 - Lei Tan , Li-Wei Liu , Yan-Fen Sun 2010
A theoretical study is carried out for the cavity cooling of a $Lambda$-type three level atom in a high-finesse optical cavity with a weakly driven field. Analytical expressions for the friction, diffusion coefficients and the equilibrium temperatures are obtained by using the Heisenberg equations, then they are calculated numerically and shown graphically as a function of controlling parameters. For a suitable choice of these parameters, the dynamics of the cavity field interaction with the $Lambda$-type three-level atom introduces a sisyphus cooling mechanism yielding lower temperatures below the Doppler limit and allowing larger cooling rate, avoiding the problems induced by spontaneous emission.
High-speed tracking of single particles is a gateway to understanding physical, chemical, and biological processes at the nanoscale. It is also a major experimental challenge, particularly for small, nanometer-scale particles. Although methods such as confocal or fluorescence microscopy offer both high spatial resolution and high signal-to-background ratios, the fluorescence emission lifetime limits the measurement speed, while photobleaching and thermal diffusion limit the duration of measurements. Here we present a tracking method based on elastic light scattering that enables long-duration measurements of nanoparticle dynamics at rates of thousands of frames per second. We contain the particles within a single-mode silica fiber containing a sub-wavelength, nano-fluidic channel and illuminate them using the fibers strongly confined optical mode. The diffusing particles in this cylinderical geometry are continuously illuminated inside the collection focal plane. We show that the method can track unlabeled dielectric particles as small as 20 nm as well as individual cowpea chlorotic mottle virus (CCMV) virions - 4.6 megadaltons in size - at rates of over 2 kHz for durations of tens of seconds. Our setup is easily incorporated into common optical microscopes and extends their detection range to nanometer-scale particles and macromolecules. The ease-of-use and performance of this technique support its potential for widespread applications in medical diagnostics and micro total analysis systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا