Random tree-weighted graphs


Abstract in English

For each $n ge 1$, let $mathrm{d}^n=(d^{n}(i),1 le i le n)$ be a sequence of positive integers with even sum $sum_{i=1}^n d^n(i) ge 2n$. Let $(G_n,T_n,Gamma_n)$ be uniformly distributed over the set of simple graphs $G_n$ with degree sequence $mathrm{d}^n$, endowed with a spanning tree $T_n$ and rooted along an oriented edge $Gamma_n$ of $G_n$ which is not an edge of $T_n$. Under a finite variance assumption on degrees in $G_n$, we show that, after rescaling, $T_n$ converges in distribution to the Brownian continuum random tree as $n to infty$. Our main tool is a new version of Pitmans additive coalescent (https://doi.org/10.1006/jcta.1998.2919), which can be used to build both random trees with a fixed degree sequence, and random tree-weighted graphs with a fixed degree sequence. As an input to the proof, we also derive a Poisson approximation theorem for the number of loops and multiple edges in the superposition of a fixed graph and a random graph with a given degree sequence sampled according to the configuration model; we find this to be of independent interest.

Download