Do you want to publish a course? Click here

Ice Giant System Exploration in the 2020s: An Introduction

139   0   0.0 ( 0 )
 Added by Leigh Fletcher
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The international planetary science community met in London in January 2020, united in the goal of realising the first dedicated robotic mission to the distant Ice Giants, Uranus and Neptune, as the only major class of Solar System planet yet to be comprehensively explored. Ice-Giant-sized worlds appear to be a common outcome of the planet formation process, and pose unique and extreme tests of our understanding of planetary origins, exotic water-rich planetary interiors, dynamic seasonal atmospheres, complex magnetospheric configurations, geologically-rich icy satellites (both natural and captured), and delicate planetary rings. This article introduces a special issue of Philosophical Transactions of the Royal Society A on Ice Giant System exploration at the start of the 2020s. We review the scientific potential and existing mission design concepts for an ambitious international partnership for exploring Uranus and/or Neptune in the coming decades.



rate research

Read More

This white paper, written in support of NASAs 2023-2032 Planetary Decadal Survey, outlines 10 major questions that focus on the origin, evolution, and current processes that shape the atmospheres of Uranus and Neptune. Prioritizing these questions over the next decade will greatly improve our understanding of this unique class of planets, which have remained largely unexplored since the Voyager flybys. Studying the atmospheres of the Ice Giants will greatly inform our understanding of the origin and evolution of the solar system as a whole, in addition to the growing number of exoplanetary systems that contain Neptune-mass planets.
The 27 satellites of Uranus are enigmatic, with dark surfaces coated by material that could be rich in organics. Voyager 2 imaged the southern hemispheres of Uranus five largest classical moons Miranda, Ariel, Umbriel, Titania, and Oberon, as well as the largest ring moon Puck, but their northern hemispheres were largely unobservable at the time of the flyby and were not imaged. Additionally, no spatially resolved datasets exist for the other 21 known moons, and their surface properties are essentially unknown. Because Voyager 2 was not equipped with a near-infrared mapping spectrometer, our knowledge of the Uranian moons surface compositions, and the processes that modify them, is limited to disk-integrated datasets collected by ground- and space-based telescopes. Nevertheless, images collected by the Imaging Science System on Voyager 2 and reflectance spectra collected by telescope facilities indicate that the five classical moons are candidate ocean worlds that might currently have, or had, liquid subsurface layers beneath their icy surfaces. To determine whether these moons are ocean worlds, and investigate Uranus ring moons and irregular satellites, close-up observations and measurements made by instruments onboard a Uranus orbiter are needed.
This whitepaper identifies important science questions that can be answered through exploration of the Jupiter System, with emphasis on the questions that can be addressed by the Europa Clipper Mission. We advocate for adding Jupiter System Science to the mission after launch when expanding the scientific scope will not affect the development cost.
106 - H.R. Wakeford , P.A. Dalba 2020
Exoplanets number in their thousands, and the number is ever increasing with the advent of new surveys and improved instrumentation. One of the most surprising things we have learnt from these discoveries is not that small-rocky planets in their stars habitable zones are likely common, but that the most typical size of exoplanet is that not seen in our solar system - radii between that of Neptune and the Earth dubbed mini-Neptunes and super-Earths. In fact, a transiting exoplanet is four times as likely to be in this size regime than that of any giant planet in our solar system. Investigations into the atmospheres of giant hydrogen/helium dominated exoplanets has pushed down to Neptune and mini-Neptune sized worlds revealing molecular absorption from water, scattering and opacity from clouds, and measurements of atmospheric abundances. However, unlike measurements of Jupiter, or even Saturn sized worlds, the smaller giants lack a ground truth on what to expect or interpret from their measurements. How did these sized worlds form and evolve and was it different from their larger counterparts? What is their internal composition and how does that impact their atmosphere? What informs the energy budget of these distant worlds? In this we discuss what characteristics we can measure for exoplanets, and why a mission to the ice giants in our solar system is the logical next step for understanding exoplanets.
Two new interplanetary technologies have advanced in the past decade to the point where they may enable exciting, affordable missions that reach further and faster deep into the outer regions of our solar system: (i) small and capable interplanetary spacecraft and (ii) light-driven sails. Combination of these two technologies could drastically reduce travel times within the solar system. We discuss a new paradigm that involves small and fast moving sailcraft that could enable exploration of distant regions of the solar system much sooner and faster than previously considered. We present some of the exciting science objectives for these miniaturized intelligent space systems that could lead to transformational advancements in the space sciences in the coming decade.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا