No Arabic abstract
For efficient railway operation and maintenance, the demand for onboard monitoring systems is increasing with technological advances in high-speed trains. Wheel flats, one of the common defects, can be monitored in real-time through accelerometers mounted on each axle box so that the criteria of relevant standards are not exceeded. This study aims to identify the location and height of a single wheel flat based on non-stationary axle box acceleration (ABA) signals, which are generated through a train dynamics model with flexible wheelsets. The proposed feature extraction method is applied to extract the root mean square distribution of decomposed ABA signals on a balanced binary tree as orthogonal energy features using the Hilbert transform and wavelet packet decomposition. The neural network-based defect prediction model is created to define the relationship between input features and output labels. For insufficient input features, data augmentation is performed by the linear interpolation of existing features. The performance of defect prediction is evaluated in terms of the accuracy of detection and localization and improved by augmented input features and highly decomposed ABA signals. The results show that the trained neural network can predict the height and location of a single wheel flat from orthogonal energy features with high accuracy.
This paper presents a robust method to monitor heart rate (HR) from BCG (Ballistocardiography) signal, which is acquired from the sensor embedded in a chair or a mattress. The proposed algorithm addresses the shortfalls in traditional Fast Fourier Transform (FFT) based approaches by introducing Hilbert Transform to extract the pulse envelope that models the repetition of J-peaks in BCG signal. The frequency resolution is further enhanced by applying FFT and phase vocoder to the pulse envelope. The performance of the proposed algorithm is verified by experiment from 7 subjects. For HR estimation, mean absolute error (MAE) of 0.90 beats per minute (BPM) and standard deviation of absolute error (STD) of 1.14 BPM are obtained. Pearson correlation coefficient between estimated HR and ground truth HR of 0.98 is also achieved.
In this work, we performed a thorough comparative analysis on a radio frequency (RF) based drone detection and identification system (DDI) under wireless interference, such as WiFi and Bluetooth, by using machine learning algorithms, and a pre-trained convolutional neural network-based algorithm called SqueezeNet, as classifiers. In RF signal fingerprinting research, the transient and steady state of the signals can be used to extract a unique signature from an RF signal. By exploiting the RF control signals from unmanned aerial vehicles (UAVs) for DDI, we considered each state of the signals separately for feature extraction and compared the pros and cons for drone detection and identification. Using various categories of wavelet transforms (discrete wavelet transform, continuous wavelet transform, and wavelet scattering transform) for extracting features from the signals, we built different models using these features. We studied the performance of these models under different signal to noise ratio (SNR) levels. By using the wavelet scattering transform to extract signatures (scattergrams) from the steady state of the RF signals at 30 dB SNR, and using these scattergrams to train SqueezeNet, we achieved an accuracy of 98.9% at 10 dB SNR.
Designing invisible objects without the usage of extreme materials is a long-sought goal for photonic applications. Invisibility techniques demonstrated so far typically require high anisotropy, gain and losses, while also not being flexible. Here we propose an invisibility approach to suppress the scattering of waves from/to given directions and for particular frequency ranges, i.e. invisibility on demand. We derive a Born approximation-based generalized Hilbert transform for a specific invisibility arrangement relating the two quadratures of the complex permittivity of an object. The theoretical proposal is confirmed by numerical calculations, indicating that near-perfect invisibility can be attained for arbitrary objects with low-index contrast. We further demonstrate the cases where the idea can be extended to high-index objects or restricted to within practical limits by avoiding gain areas. The proposed concept opens a new route for the practical implementation of complex-shaped objects with arbitrarily suppressed scatterings determined on demand.
This paper presents a computationally efficient technique for decomposing non-orthogonally superposed $k$ geometric sequences. The method, which is named as geometric sequence decomposition with $k$-simplexes transform (GSD-ST), is based on the concept of transforming an observed sequence to multiple $k$-simplexes in a virtual $k$-dimensional space and correlating the volumes of the transformed simplexes. Hence, GSD-ST turns the problem of decomposing $k$ geometric sequences into one of solving a $k$-th order polynomial equation. Our technique has significance for wireless communications because sampled points of a radio wave comprise a geometric sequence. This implies that GSD-ST is capable of demodulating randomly combined radio waves, thereby eliminating the effect of interference. To exemplify the potential of GSD-ST, we propose a new radio access scheme, namely non-orthogonal interference-free radio access (No-INFRA). Herein, GSD-ST enables the collision-free reception of uncoordinated access requests. Numerical results show that No-INFRA effectively resolves the colliding access requests when the interference is dominant.
Graph-based representations play a key role in machine learning. The fundamental step in these representations is the association of a graph structure to a dataset. In this paper, we propose a method that aims at finding a block sparse representation of the graph signal leading to a modular graph whose Laplacian matrix admits the found dictionary as its eigenvectors. The role of sparsity here is to induce a band-limited representation or, equivalently, a modular structure of the graph. The proposed strategy is composed of two optimization steps: i) learning an orthonormal sparsifying transform from the data; ii) recovering the Laplacian, and then topology, from the transform. The first step is achieved through an iterative algorithm whose alternating intermediate solutions are expressed in closed form. The second step recovers the Laplacian matrix from the sparsifying transform through a convex optimization method. Numerical results corroborate the effectiveness of the proposed methods over both synthetic data and real brain data, used for inferring the brain functionality network through experiments conducted over patients affected by epilepsy.