Do you want to publish a course? Click here

Multi-wavelength photometry during the 2018 superoutburst of the WZ Sge-type dwarf nova EG Cancri

81   0   0.0 ( 0 )
 Added by Mariko Kimura
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the multi-wavelength photometry of the 2018 superoutburst in EG Cnc. We have detected stage A superhumps and long-lasting late-stage superhumps via the optical photometry and have constrained the binary mass ratio and its possible range. The median value of the mass ratio is 0.048 and the upper limit is 0.057, which still implies that EG Cnc is one of the possible candidates for the period bouncer. This object also showed multiple rebrightenings in this superoutburst, which are the same as those in its previous superoutburst in 1996--1997 despite the difference in the main superoutburst. This would represent that the rebrightening type is inherent to each object and is independent of the initial disk mass at the beginning of superoutbursts. We also found that $B-I$ and $J-K_{rm S}$ colors were unusually red just before the rebrightening phase and became bluer during the quiescence between rebrightenings, which would mean that the low-temperature mass reservoir at the outermost disk accreted with time after the main superoutburst. Also, the ultraviolet flux was sensitive to rebrightenings as well as the optical flux, and the $U-B$ color became redder during the rebrightening phase, which would indicate that the inner disk became cooler when this object repeated rebrightenings. Our results thus basically support the idea that the cool mass reservoir in the outermost disk is responsible for rebrightenings.



rate research

Read More

We report on a superoutburst of a WZ Sge-type dwarf nova (DN), ASASSN-15po. The light curve showed the main superoutburst and multiple rebrightenings. In this outburst, we observed early superhumps and growing (stage A) superhumps with periods of 0.050454(2) and 0.051809(13) d, respectively. We estimated that the mass ratio of secondary to primary ($q$) is 0.0699(8) by using $P_{rm orb}$ and a superhump period $P_{rm SH}$ of stage A. ASASSN-15po [$P_{rm orb} sim$ 72.6 min] is the first DN with the orbital period between 67--76 min. Although the theoretical predicted period minimum $P_{rm min}$ of hydrogen-rich cataclysmic variables (CVs) is about 65--70 min, the observational cut-off of the orbital period distribution at 80 min implies that the period minimum is about 82 min, and the value is widely accepted. We suggest the following four possibilities: the object is (1) a theoretical period minimum object (2) a binary with a evolved secondary (3) a binary with a metal-poor (Popullation II) seconday (4) a binary which was born with a brown-dwarf donor below the period minimum.
We carried out an international spectroscopic observation campaign of the dwarf nova GW Librae (GW Lib) during the 2007 superoutburst. Our observation period covered the rising phase of the superoutburst, maximum, slowly decaying phase (plateau), and long fading tail after the rapid decline from the plateau. The spectral features dramatically changed during the observations. In the rising phase, only absorption lines of H$alpha$, H$beta$, and H$gamma$ were present. Around the maximum, the spectrum showed singly-peaked emission lines of H$alpha$, He I 5876, He I 6678, He II 4686, and C III/N III as well as absorption lines of Balmer components and He I. These emission lines significantly weakened in the latter part of the plateau phase. In the fading tail, all the Balmer lines and He I 6678 were in emission, as observed in quiescence. We find that the center of the H$alpha$ emission component was mostly stable over the whole orbital phase, being consistent with the low inclination of the system. Comparing with the observational results of WZ Sge during the 2001 superoutburst, the same type of stars as GW Lib seen with a high inclination angle, we interpret that the change of the H$alpha$ profile before the fading tail phase is attributed to a photoionized region formed at the outer edge of the accretion disk, irradiated from the white dwarf and inner disk.
174 - R. Matsui , M. Uemura , A. Arai 2009
We report on optical and infrared photometric observations of a WZ Sge-type dwarf nova, V455 And during a superoutburst in 2007. These observations were performed with the KANATA (V, J, and K_s bands) and MITSuME (g, Rc, and Ic bands) telescopes. Our 6-band simultaneous observations allowed us to investigate the temporal variation of the temperature and the size of the emitting region associated with the superoutburst and short-term modulations, such as early and ordinary superhumps. A hot (>11000 K) accretion disk suddenly disappeared when the superoutburst finished, while blackbody emission, probably from the disk, still remained dominant in the optical region with a moderately high temperature (~8000 K). This indicates that a substantial amount of gas was stored in the disk even after the outburst. This remnant matter may be a sign of an expected mass-reservoir which can trigger echo outbursts observed in several WZ Sge stars. The color variation associated with superhumps indicates that viscous heating in a superhump source stopped on the way to the superhump maximum, and a subsequent expansion of a low-temperature region made the maximum. The color variation of early superhumps was totally different from that of superhumps: the object was bluest at the early superhump minimum. The temperature of the early superhump light source was lower than that of an underlying component, indicating that the early superhump light source was a vertically expanded low-temperature region at the outermost part of the disk.
We present our photometric studies of the newly discovered optical transient, OT J012059.6+325545, which underwent a large outburst between 2010 November and 2011 January. The amplitude of the outburst was about 8 mag. We performed simultaneous multi-color photometry by using g, Rc, and i-band filters from the early stage of the outburst. The time resolved photometry during the early stage revealed periodic variations with double-peaked profiles, which are referred to as early superhumps, with amplitudes of about 0.08 mag. After the rapid fading from the main outburst, we found rebrightening phenomena, which occurred at least nine times. The large amplitude of the outburst, early superhumps, and rebrightening phenomena are typical features of WZ Sge-type dwarf novae. We detected color variations within the early superhump modulations making this only the second system, after V445 And, for which this has been established. We carried out numerical calculations of the accretion disk to explain both of the modulations and the color variations of the early superhump. This modeling of the disk height supports the idea that height variations within the outer disk can produce the early superhump modulations, though we cannot rule out that temperature asymmetries may also play a role.
We report photometric and spectroscopic observations and analysis of the 2019 superoutburst of TCP J21040470+4631129. This object showed a 9-mag superoutburst with early superhumps and ordinary superhumps, which are the features of WZ Sge-type dwarf novae. Five rebrightenings were observed after the main superoutburst. The spectra during the post-superoutburst stage showed the Balmer, He I and possible sodium doublet features. The mass ratio is derived as 0.0880(9) from the period of the superhump. During the third and fifth rebrightenings, growing superhumps and superoutbursts were observed, which have never been detected during a rebrightening phase among WZ Sge-type dwarf novae with multiple rebrightenings. To induce a superoutburst during the brightening phase, the accretion disk was needed to expand beyond the 3:1 resonance radius of the system again after the main superoutburst. These peculiar phenomena can be explained by the enhanced viscosity and large radius of the disk suggested by the higher luminosity and the presence of late-stage superhumps during the post-superoutburst stage, plus by more mass supply from the cool mass reservoir and/or from the secondary because of the enhanced mass transfer than those of other WZ Sge-type dwarf novae.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا