Do you want to publish a course? Click here

Delving into Inter-Image Invariance for Unsupervised Visual Representations

105   0   0.0 ( 0 )
 Added by Jiahao Xie
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Contrastive learning has recently shown immense potential in unsupervised visual representation learning. Existing studies in this track mainly focus on intra-image invariance learning. The learning typically uses rich intra-image transformations to construct positive pairs and then maximizes agreement using a contrastive loss. The merits of inter-image invariance, conversely, remain much less explored. One major obstacle to exploit inter-image invariance is that it is unclear how to reliably construct inter-image positive pairs, and further derive effective supervision from them since there are no pair annotations available. In this work, we present a rigorous and comprehensive study on inter-image invariance learning from three main constituting components: pseudo-label maintenance, sampling strategy, and decision boundary design. Through carefully-designed comparisons and analysis, we propose a unified and generic framework that supports the integration of unsupervised intra- and inter-image invariance learning. With all the obtained recipes, our final model, namely InterCLR, shows consistent improvements over state-of-the-art intra-image invariance learning methods on multiple standard benchmarks. Codes will be released at https://github.com/open-mmlab/OpenSelfSup.

rate research

Read More

Real world learning scenarios involve a nonstationary distribution of classes with sequential dependencies among the samples, in contrast to the standard machine learning formulation of drawing samples independently from a fixed, typically uniform distribution. Furthermore, real world interactions demand learning on-the-fly from few or no class labels. In this work, we propose an unsupervised model that simultaneously performs online visual representation learning and few-shot learning of new categories without relying on any class labels. Our model is a prototype-based memory network with a control component that determines when to form a new class prototype. We formulate it as an online Gaussian mixture model, where components are created online with only a single new example, and assignments do not have to be balanced, which permits an approximation to natural imbalanced distributions from uncurated raw data. Learning includes a contrastive loss that encourages different views of the same image to be assigned to the same prototype. The result is a mechanism that forms categorical representations of objects in nonstationary environments. Experiments show that our method can learn from an online stream of visual input data and is significantly better at category recognition compared to state-of-the-art self-supervised learning methods.
In supervised learning, smoothing label or prediction distribution in neural network training has been proven useful in preventing the model from being over-confident, and is crucial for learning more robust visual representations. This observation motivates us to explore ways to make predictions flattened in unsupervised learning. Considering that human-annotated labels are not adopted in unsupervised learning, we introduce a straightforward approach to perturb input image space in order to soften the output prediction space indirectly, meanwhile, assigning new label values in the unsupervised frameworks accordingly. Despite its conceptual simplicity, we show empirically that with the simple solution -- Unsupervised image mixtures (Un-Mix), we can learn more robust visual representations from the transformed input. Extensive experiments are conducted on CIFAR-10, CIFAR-100, STL-10, Tiny ImageNet and standard ImageNet with popular unsupervised methods SimCLR, BYOL, MoCo V1&V2, etc. Our proposed image mixture and label assignment strategy can obtain consistent improvement by 1~3% following exactly the same hyperparameters and training procedures of the base methods.
138 - Li Ding , Yongwei Wang , Xin Ding 2021
Deep learning based image classification models are shown vulnerable to adversarial attacks by injecting deliberately crafted noises to clean images. To defend against adversarial attacks in a training-free and attack-agnostic manner, this work proposes a novel and effective reconstruction-based defense framework by delving into deep image prior (DIP). Fundamentally different from existing reconstruction-based defenses, the proposed method analyzes and explicitly incorporates the model decision process into our defense. Given an adversarial image, firstly we map its reconstructed images during DIP optimization to the model decision space, where cross-boundary images can be detected and on-boundary images can be further localized. Then, adversarial noise is purified by perturbing on-boundary images along the reverse direction to the adversarial image. Finally, on-manifold images are stitched to construct an image that can be correctly predicted by the victim classifier. Extensive experiments demonstrate that the proposed method outperforms existing state-of-the-art reconstruction-based methods both in defending white-box attacks and defense-aware attacks. Moreover, the proposed method can maintain a high visual quality during adversarial image reconstruction.
91 - Mattis Paulin 2016
Convolutional neural networks (CNNs) have recently received a lot of attention due to their ability to model local stationary structures in natural images in a multi-scale fashion, when learning all model parameters with supervision. While excellent performance was achieved for image classification when large amounts of labeled visual data are available, their success for un-supervised tasks such as image retrieval has been moderate so far. Our paper focuses on this latter setting and explores several methods for learning patch descriptors without supervision with application to matching and instance-level retrieval. To that effect, we propose a new family of convolutional descriptors for patch representation , based on the recently introduced convolutional kernel networks. We show that our descriptor, named Patch-CKN, performs better than SIFT as well as other convolutional networks learned by artificially introducing supervision and is significantly faster to train. To demonstrate its effectiveness, we perform an extensive evaluation on standard benchmarks for patch and image retrieval where we obtain state-of-the-art results. We also introduce a new dataset called RomePatches, which allows to simultaneously study descriptor performance for patch and image retrieval.
Recently introduced self-supervised methods for image representation learning provide on par or superior results to their fully supervised competitors, yet the corresponding efforts to explain the self-supervised approaches lag behind. Motivated by this observation, we introduce a novel visual probing framework for explaining the self-supervised models by leveraging probing tasks employed previously in natural language processing. The probing tasks require knowledge about semantic relationships between image parts. Hence, we propose a systematic approach to obtain analogs of natural language in vision, such as visual words, context, and taxonomy. Our proposal is grounded in Marrs computational theory of vision and concerns features like textures, shapes, and lines. We show the effectiveness and applicability of those analogs in the context of explaining self-supervised representations. Our key findings emphasize that relations between language and vision can serve as an effective yet intuitive tool for discovering how machine learning models work, independently of data modality. Our work opens a plethora of research pathways towards more explainable and transparent AI.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا