Recent years have witnessed the popularity of Graph Neural Networks (GNN) in various scenarios. To obtain optimal data-specific GNN architectures, researchers turn to neural architecture search (NAS) methods, which have made impressive progress in discovering effective architectures in convolutional neural networks. Two preliminary works, GraphNAS and Auto-GNN, have made first attempt to apply NAS methods to GNN. Despite the promising results, there are several drawbacks in expressive capability and search efficiency of GraphNAS and Auto-GNN due to the designed search space. To overcome these drawbacks, we propose the SNAG framework (Simplified Neural Architecture search for Graph neural networks), consisting of a novel search space and a reinforcement learning based search algorithm. Extensive experiments on real-world datasets demonstrate the effectiveness of the SNAG framework compared to human-designed GNNs and NAS methods, including GraphNAS and Auto-GNN.