No Arabic abstract
We propose an unsupervised neural model for learning a discrete embedding of words. Unlike existing discrete embeddings, our binary embedding supports vector arithmetic operations similar to continuous embeddings. Our embedding represents each word as a set of propositional statements describing a transition rule in classical/STRIPS planning formalism. This makes the embedding directly compatible with symbolic, state of the art classical planning solvers.
Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive, so it is difficult to efficiently execute them on resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we first propose a novel Transformer distillation method that is specially designed for knowledge distillation (KD) of the Transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large teacher BERT can be effectively transferred to a small student Tiny-BERT. Then, we introduce a new two-stage learning framework for TinyBERT, which performs Transformer distillation at both the pretraining and task-specific learning stages. This framework ensures that TinyBERT can capture he general-domain as well as the task-specific knowledge in BERT. TinyBERT with 4 layers is empirically effective and achieves more than 96.8% the performance of its teacher BERTBASE on GLUE benchmark, while being 7.5x smaller and 9.4x faster on inference. TinyBERT with 4 layers is also significantly better than 4-layer state-of-the-art baselines on BERT distillation, with only about 28% parameters and about 31% inference time of them. Moreover, TinyBERT with 6 layers performs on-par with its teacher BERTBASE.
Neural natural language generation (NLG) models have recently shown remarkable progress in fluency and coherence. However, existing studies on neural NLG are primarily focused on surface-level realizations with limited emphasis on logical inference, an important aspect of human thinking and language. In this paper, we suggest a new NLG task where a model is tasked with generating natural language statements that can be emph{logically entailed} by the facts in an open-domain semi-structured table. To facilitate the study of the proposed logical NLG problem, we use the existing TabFact dataset cite{chen2019tabfact} featured with a wide range of logical/symbolic inferences as our testbed, and propose new automatic metrics to evaluate the fidelity of generation models w.r.t. logical inference. The new task poses challenges to the existing monotonic generation frameworks due to the mismatch between sequence order and logical order. In our experiments, we comprehensively survey different generation architectures (LSTM, Transformer, Pre-Trained LM) trained with different algorithms (RL, Adversarial Training, Coarse-to-Fine) on the dataset and made following observations: 1) Pre-Trained LM can significantly boost both the fluency and logical fidelity metrics, 2) RL and Adversarial Training are trading fluency for fidelity, 3) Coarse-to-Fine generation can help partially alleviate the fidelity issue while maintaining high language fluency. The code and data are available at url{https://github.com/wenhuchen/LogicNLG}.
Natural language understanding (NLU) of text is a fundamental challenge in AI, and it has received significant attention throughout the history of NLP research. This primary goal has been studied under different tasks, such as Question Answering (QA) and Textual Entailment (TE). In this thesis, we investigate the NLU problem through the QA task and focus on the aspects that make it a challenge for the current state-of-the-art technology. This thesis is organized into three main parts: In the first part, we explore multiple formalisms to improve existing machine comprehension systems. We propose a formulation for abductive reasoning in natural language and show its effectiveness, especially in domains with limited training data. Additionally, to help reasoning systems cope with irrelevant or redundant information, we create a supervised approach to learn and detect the essential terms in questions. In the second part, we propose two new challenge datasets. In particular, we create two datasets of natural language questions where (i) the first one requires reasoning over multiple sentences; (ii) the second one requires temporal common sense reasoning. We hope that the two proposed datasets will motivate the field to address more complex problems. In the final part, we present the first formal framework for multi-step reasoning algorithms, in the presence of a few important properties of language use, such as incompleteness, ambiguity, etc. We apply this framework to prove fundamental limitations for reasoning algorithms. These theoretical results provide extra intuition into the existing empirical evidence in the field.
Traditional slot filling in natural language understanding (NLU) predicts a one-hot vector for each word. This form of label representation lacks semantic correlation modelling, which leads to severe data sparsity problem, especially when adapting an NLU model to a new domain. To address this issue, a novel label embedding based slot filling framework is proposed in this paper. Here, distributed label embedding is constructed for each slot using prior knowledge. Three encoding methods are investigated to incorporate different kinds of prior knowledge about slots: atomic concepts, slot descriptions, and slot exemplars. The proposed label embeddings tend to share text patterns and reuses data with different slot labels. This makes it useful for adaptive NLU with limited data. Also, since label embedding is independent of NLU model, it is compatible with almost all deep learning based slot filling models. The proposed approaches are evaluated on three datasets. Experiments on single domain and domain adaptation tasks show that label embedding achieves significant performance improvement over traditional one-hot label representation as well as advanced zero-shot approaches.
Natural language understanding (NLU) and natural language generation (NLG) are two fundamental and related tasks in building task-oriented dialogue systems with opposite objectives: NLU tackles the transformation from natural language to formal representations, whereas NLG does the reverse. A key to success in either task is parallel training data which is expensive to obtain at a large scale. In this work, we propose a generative model which couples NLU and NLG through a shared latent variable. This approach allows us to explore both spaces of natural language and formal representations, and facilitates information sharing through the latent space to eventually benefit NLU and NLG. Our model achieves state-of-the-art performance on two dialogue datasets with both flat and tree-structured formal representations. We also show that the model can be trained in a semi-supervised fashion by utilising unlabelled data to boost its performance.