Do you want to publish a course? Click here

Generating (Factual?) Narrative Summaries of RCTs: Experiments with Neural Multi-Document Summarization

56   0   0.0 ( 0 )
 Added by Byron Wallace
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider the problem of automatically generating a narrative biomedical evidence summary from multiple trial reports. We evaluate modern neural models for abstractive summarization of relevant article abstracts from systematic reviews previously conducted by members of the Cochrane collaboration, using the authors conclusions section of the review abstract as our target. We enlist medical professionals to evaluate generated summaries, and we find that modern summarization systems yield consistently fluent and relevant synopses, but that they are not always factual. We propose new approaches that capitalize on domain-specific models to inform summarization, e.g., by explicitly demarcating snippets of inputs that convey key findings, and emphasizing the reports of large and high-quality trials. We find that these strategies modestly improve the factual accuracy of generated summaries. Finally, we propose a new method for automatically evaluating the factuality of generated narrative evidence syntheses using models that infer the directionality of reported findings.



rate research

Read More

129 - Darsh J Shah , Lili Yu , Tao Lei 2021
We present a method for generating comparative summaries that highlights similarities and contradictions in input documents. The key challenge in creating such summaries is the lack of large parallel training data required for training typical summarization systems. To this end, we introduce a hybrid generation approach inspired by traditional concept-to-text systems. To enable accurate comparison between different sources, the model first learns to extract pertinent relations from input documents. The content planning component uses deterministic operators to aggregate these relations after identifying a subset for inclusion into a summary. The surface realization component lexicalizes this information using a text-infilling language model. By separately modeling content selection and realization, we can effectively train them with limited annotations. We implemented and tested the model in the domain of nutrition and health -- rife with inconsistencies. Compared to conventional methods, our framework leads to more faithful, relevant and aggregation-sensitive summarization -- while being equally fluent.
To assess the effectiveness of any medical intervention, researchers must conduct a time-intensive and highly manual literature review. NLP systems can help to automate or assist in parts of this expensive process. In support of this goal, we release MS^2 (Multi-Document Summarization of Medical Studies), a dataset of over 470k documents and 20k summaries derived from the scientific literature. This dataset facilitates the development of systems that can assess and aggregate contradictory evidence across multiple studies, and is the first large-scale, publicly available multi-document summarization dataset in the biomedical domain. We experiment with a summarization system based on BART, with promising early results. We formulate our summarization inputs and targets in both free text and structured forms and modify a recently proposed metric to assess the quality of our systems generated summaries. Data and models are available at https://github.com/allenai/ms2
Automatic abstractive summaries are found to often distort or fabricate facts in the article. This inconsistency between summary and original text has seriously impacted its applicability. We propose a fact-aware summarization model FASum to extract and integrate factual relations into the summary generation process via graph attention. We then design a factual corrector model FC to automatically correct factual errors from summaries generated by existing systems. Empirical results show that the fact-aware summarization can produce abstractive summaries with higher factual consistency compared with existing systems, and the correction model improves the factual consistency of given summaries via modifying only a few keywords.
Developed so far, multi-document summarization has reached its bottleneck due to the lack of sufficient training data and diverse categories of documents. Text classification just makes up for these deficiencies. In this paper, we propose a novel summarization system called TCSum, which leverages plentiful text classification data to improve the performance of multi-document summarization. TCSum projects documents onto distributed representations which act as a bridge between text classification and summarization. It also utilizes the classification results to produce summaries of different styles. Extensive experiments on DUC generic multi-document summarization datasets show that, TCSum can achieve the state-of-the-art performance without using any hand-crafted features and has the capability to catch the variations of summary styles with respect to different text categories.
168 - Yuning Mao , Yanru Qu , Yiqing Xie 2020
While neural sequence learning methods have made significant progress in single-document summarization (SDS), they produce unsatisfactory results on multi-document summarization (MDS). We observe two major challenges when adapting SDS advances to MDS: (1) MDS involves larger search space and yet more limited training data, setting obstacles for neural methods to learn adequate representations; (2) MDS needs to resolve higher information redundancy among the source documents, which SDS methods are less effective to handle. To close the gap, we present RL-MMR, Maximal Margin Relevance-guided Reinforcement Learning for MDS, which unifies advanced neural SDS methods and statistical measures used in classical MDS. RL-MMR casts MMR guidance on fewer promising candidates, which restrains the search space and thus leads to better representation learning. Additionally, the explicit redundancy measure in MMR helps the neural representation of the summary to better capture redundancy. Extensive experiments demonstrate that RL-MMR achieves state-of-the-art performance on benchmark MDS datasets. In particular, we show the benefits of incorporating MMR into end-to-end learning when adapting SDS to MDS in terms of both learning effectiveness and efficiency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا