Do you want to publish a course? Click here

A Catalog of 406 AGNs in MaNGA: A Connection between Radio-mode AGN and Star Formation Quenching

104   0   0.0 ( 0 )
 Added by Julia Comerford
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Accurate active galactic nucleus (AGN) identifications and spatially resolved host galaxy properties are a powerful combination for studies of the role of AGNs and AGN feedback in the coevolution of galaxies and their central supermassive black holes. Here, we present robust identifications of 406 AGNs in the first 6261 galaxies observed by the integral field spectroscopy survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). Instead of using optical line flux ratios, which can be difficult to interpret in light of the effects of shocks and metallicity, we identify the AGNs via mid-infrared WISE colors, Swift/BAT ultra hard X-ray detections, NVSS and FIRST radio observations, and broad emission lines in SDSS spectra. We subdivide the AGNs into radio-quiet and radio-mode AGNs, and examine the correlations of the AGN classes with host galaxy star formation rates and stellar populations. When compared to the radio-quiet AGN host galaxies, we find that the radio-mode AGN host galaxies reside preferentially in elliptical galaxies, lie further beneath the star-forming main sequence (with lower star formation rates at fixed galaxy mass), have older stellar populations, and have more negative stellar age gradients with galactocentric distance (indicating inside-out quenching of star formation). These results establish a connection between radio-mode AGNs and the suppression of star formation.



rate research

Read More

We examine the relationship between star formation and AGN activity by constructing matched samples of local ($0<z<0.6$) radio-loud and radio-quiet AGN in the $textit{Herschel}$-ATLAS fields. Radio-loud AGN are classified as high-excitation and low-excitation radio galaxies (HERGs, LERGs) using their emission lines and $textit{WISE}$ 22-$mu$m luminosity. AGN accretion and jet powers in these active galaxies are traced by [OIII] emission-line and radio luminosity, respectively. Star formation rates (SFRs) and specific star formation rates (SSFRs) were derived using $textit{Herschel}$ 250-$mu$m luminosity and stellar mass measurements from the SDSS$-$MPA-JHU catalogue. In the past, star formation studies of AGN have mostly focused on high-redshift sources to observe the thermal dust emission that peaks in the far-infrared, which limited the samples to powerful objects. However, with $textit{Herschel}$ we can expand this to low redshifts. Our stacking analyses show that SFRs and SSFRs of both radio-loud and radio-quiet AGN increase with increasing AGN power but that radio-loud AGN tend to have lower SFR. Additionally, radio-quiet AGN are found to have approximately an order of magnitude higher SSFRs than radio-loud AGN for a given level of AGN power. The difference between the star formation properties of radio-loud and -quiet AGN is also seen in samples matched in stellar mass.
We present the Advanced Camera for Surveys Active Galactic Nuclei (ACS-AGN) Catalog, a catalog of 2585 active galactic nucleus (AGN) host galaxies that are at redshifts 0.2<z<2.5 and that were imaged with the Hubble Space Telescopes Advanced Camera for Surveys (ACS). Using the ACS General Catalog (ACS-GC) as our initial sample, we select an AGN subsample using Spitzer and Chandra data along with their respective established AGN selection criteria. We then gather further multi-wavelength photometric data in order to construct spectral energy distributions (SEDs). Using these SEDs we are able to derive multiple AGN and host galaxy properties, such as star formation rate, AGN luminosity, stellar mass, and nuclear column density. From these data, we show that AGN host galaxies tend to lie below the star-forming main sequence, with X-ray-selected AGN host galaxies being more offset than IR-selected AGN host galaxies. This suggests that there is some process, possibly negative feedback, in AGN host galaxies causing decreased star formation. We also demonstrate that there is a positive trend between star formation rate and AGN luminosity in AGN host galaxies, in individual redshift bins and across all redshift bins, and that both are correlated with the stellar mass of their galaxies. This points towards an underlying link between the stellar mass, stellar growth, and SMBH growth in a galaxy.
The ALMaQUEST (ALMA-MaNGA QUEnching and STar formation) survey is a program with spatially-resolved $^{12}$CO(1-0) measurements obtained with the Atacama Large Millimeter Array (ALMA) for 46 galaxies selected from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) DR15 optical integral-field spectroscopic survey. The aim of the ALMaQUEST survey is to investigate the dependence of star formation activity on the cold molecular gas content at kpc scales in nearby galaxies. The sample consists of galaxies spanning a wide range in specific star formation rate (sSFR), including starburst (SB), main-sequence (MS), and green valley (GV) galaxies. In this paper, we present the sample selection and characteristics of the ALMA observations, and showcase some of the key results enabled by the combination of spatially-matched stellar populations and gas measurements. Considering the global (aperture-matched) stellar mass, molecular gas mass, and star formation rate of the sample, we find that the sSFR depends on both the star formation efficiency (SFE) and the molecular gas fraction ($f_{rm H_{2}}$), although the correlation with the latter is slightly weaker. Furthermore, the dependence of sSFR on the molecular gas content (SFE or $f_{rm H_{2}}$) is stronger than that on either the atomic gas fraction or the molecular-to-atomic gas fraction, albeit with the small HI sample size. On kpc scales, the variations in both SFE and $f_{rm H_{2}}$ within individual galaxies can be as large as 1-2 dex thereby demonstrating that the availability of spatially-resolved observations is essential to understand the details of both star formation and quenching processes.
Galaxies undergoing ram pressure stripping in clusters are an excellent opportunity to study the effects of environment on both the AGN and the star formation activity. We report here on the most recent results from the GASP survey. We discuss the AGN-ram pressure stripping connection and some evidence for AGN feedback in stripped galaxies. We then focus on the star formation activity, both in the disks and the tails of these galaxies, and conclude drawing a picture of the relation between multi-phase gas and star formation.
We investigate the quenching properties of central and satellite galaxies, utilizing the halo masses and central-satellite identifications from the SDSS galaxy group catalog of Yang et al. We find that the quenched fractions of centrals and satellites of similar stellar masses have similar dependence on host halo mass. The similarity of the two populations is also found in terms of specific star formation rate and 4000 AA break. The quenched fractions of centrals and satellites of similar masses show similar dependencies on bulge-to-total light ratio, central velocity dispersion and halo-centric distance in halos of given halo masses. The prevalence of optical/radio-loud AGNs is found to be similar for centrals and satellites at given stellar masses. All these findings strongly suggest that centrals and satellites of similar masses experience similar quenching processes in their host halos. We discuss implications of our results for the understanding of galaxy quenching.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا