Do you want to publish a course? Click here

Completing the Census of AGN in GOODS-S/HUDF: New Ultra-Deep Radio Imaging and Predictions for JWST

382   0   0.0 ( 0 )
 Added by Stacey Alberts
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A global understanding of Active Galactic Nuclei (AGN) and their host galaxies hinges on completing a census of AGN activity without selection biases down to the low-luminosity regime. Toward that goal, we identify AGN within faint radio populations at cosmic noon selected from new ultra-deep, high resolution imaging from the Karl G. Jansky Very Large Array at 6 and 3 GHz. These radio data are spatially coincident with the ultra-deep legacy surveys in the GOODS-S/HUDF region, particularly the unparalleled Chandra 7 Ms X-ray imaging. Combined, these datasets provide a unique basis for a thorough census of AGN, allowing simultaneous identification via (1) high X-ray luminosity; (2) hard X-ray spectra; (3) excess X-ray relative to 6 GHz; (4) mid-IR colors; (5) SED fitting; (6) radio excess via the radio-infrared relation; (7) flat radio spectra via multi-band radio; and (8) optical spectroscopy. We uncover AGN in fully half our faint radio sample, indicating a source density of one AGN arcmin$^{-2}$, with a similar number of radio-undetected AGN identified via X-ray over the same area. Our radio-detected AGN are majority radio-quiet, with radio emission consistent with being powered predominantly by star formation. Nevertheless, we find AGN radio signatures in our sample: $sim12%$ with radio excess indicating radio-loud activity and $sim16%$ of radio-quiet AGN candidates with flat or inverted radio spectra. The latter is a lower limit, pending our upcoming deeper 3 GHz survey. Finally, despite these extensive datasets, this work is likely still missing heavily obscured AGN. We discuss in detail this elusive population and the prospects for completing our AGN census with JWST/MIRI.



rate research

Read More

The IRAC ultradeep field (IUDF) and IRAC Legacy over GOODS (IGOODS) programs are two ultradeep imaging surveys at 3.6{mu}m and 4.5{mu}m with the Spitzer Infrared Array Camera (IRAC). The primary aim is to directly detect the infrared light of reionization epoch galaxies at z > 7 and to constrain their stellar populations. The observations cover the Hubble Ultra Deep Field (HUDF), including the two HUDF parallel fields, and the CANDELS/GOODS-South, and are combined with archival data from all previous deep programs into one ultradeep dataset. The resulting imaging reaches unprecedented coverage in IRAC 3.6{mu}m and 4.5{mu}m ranging from > 50 hour over 150 arcmin^2, > 100 hour over 60 sq arcmin2, to 200 hour over 5 - 10 arcmin$^2$. This paper presents the survey description, data reduction, and public release of reduced mosaics on the same astrometric system as the CANDELS/GOODS-South WFC3 data. To facilitate prior-based WFC3+IRAC photometry, we introduce a new method to create high signal-to-noise PSFs from the IRAC data and reconstruct the complex spatial variation due to survey geometry. The PSF maps are included in the release, as are registered maps of subsets of the data to enable reliability and variability studies. Simulations show that the noise in the ultradeep IRAC images decreases approximately as the square root of integration time over the range 20 - 200 hours, well below the classical confusion limit, reaching 1{sigma} point source sensitivities as faint as of 15 nJy (28.5 AB) at 3.6{mu}m and 18 nJy (28.3 AB) at 4.5{mu}m. The value of such ultradeep IRAC data is illustrated by direct detections of z = 7 - 8 galaxies as faint as HAB = 28.
We have worked out predictions for the radio counts of star-forming galaxies down to nJy levels, along with redshift distributions down to the detection limits of the phase 1 Square Kilometer Array MID telescope (SKA1-MID) and of its precursors. Such predictions were obtained by coupling epoch dependent star formation rate (SFR) functions with relations between SFR and radio (synchrotron and free-free) emission. The SFR functions were derived taking into account both the dust obscured and the unobscured star-formation, by combining far-infrared (FIR), ultra-violet (UV) and H_alpha luminosity functions up to high redshifts. We have also revisited the South Pole Telescope (SPT) counts of dusty galaxies at 95,GHz performing a detailed analysis of the Spectral Energy Distributions (SEDs). Our results show that the deepest SKA1-MID surveys will detect high-z galaxies with SFRs two orders of magnitude lower compared to Herschel surveys. The highest redshift tails of the distributions at the detection limits of planned SKA1-MID surveys comprise a substantial fraction of strongly lensed galaxies. We predict that a survey down to 0.25 microJy at 1.4 GHz will detect about 1200 strongly lensed galaxies per square degree, at redshifts of up to 10. For about 30% of them the SKA1-MID will detect at least 2 images. The SKA1-MID will thus provide a comprehensive view of the star formation history throughout the re-ionization epoch, unaffected by dust extinction. We have also provided specific predictions for the EMU/ASKAP and MIGHTEE/MeerKAT surveys.
The JWST MIRI instrument will revolutionize extragalactic astronomy with unprecedented sensitivity and angular resolution in mid-IR. Here, we assess the potential of MIRI photometry to constrain galaxy properties in the Cosmic Evolution Early Release Science (CEERS) survey. We derive estimated MIRI fluxes from the spectral energy distributions (SEDs) of real sources that fall in a planned MIRI pointing. We also obtain MIRI fluxes for hypothetical AGN-galaxy mixed models varying the AGN fractional contribution to the total IR luminosity ($rm frac_{AGN}$). Based on these model fluxes, we simulate CEERS imaging (3.6-hour exposure) in 6 bands from F770W to F2100W using MIRISIM, and reduce these data using JWST PIPELINE. We perform PSF-matched photometry with TPHOT, and fit the source SEDs with X-CIGALE, simultaneously modeling photometric redshift and other physical properties. Adding the MIRI data, the accuracy of both redshift and $rm frac_{AGN}$ is generally improved by factors of $gtrsim 2$ for all sources at $zlesssim 3$. Notably, for pure-galaxy inputs ($rm frac_{AGN}=0$), the accuracy of $rm frac_{AGN}$ is improved by $sim 100$ times thanks to MIRI. The simulated CEERS MIRI data are slightly more sensitive to AGN detections than the deepest X-ray survey, based on the empirical $L_{rm X}$-$L_{rm 6mu m}$ relation. Like X-ray observations, MIRI can also be used to constrain the AGN accretion power (accuracy $approx 0.3$ dex). Our work demonstrates that MIRI will be able to place strong constraints on the mid-IR luminosities from star formation and AGN, and thereby facilitate studies of the galaxy/AGN co-evolution.
90 - William Cowley 2017
We present predictions for the outcome of deep galaxy surveys with the $James$ $Webb$ $Space$ $Telescope$ ($JWST$) obtained from a physical model of galaxy formation in $Lambda$CDM. We use the latest version of the GALFORM model, embedded within a new ($800$ Mpc)$^{3}$ dark matter only simulation with a halo mass resolution of $M_{rm halo}>2times10^{9}$ $h^{-1}$ M$_{odot}$. For computing full UV-to-mm galaxy spectral energy distributions, including the absorption and emission of radiation by dust, we use the spectrophotometric radiative transfer code GRASIL. The model is calibrated to reproduce a broad range of observational data at $zlesssim6$, and we show here that it can also predict evolution of the rest-frame far-UV luminosity function for $7lesssim zlesssim10$ which is in good agreement with observations. We make predictions for the evolution of the luminosity function from $z=16$ to $z=0$ in all broadband filters on the Near InfraRed Camera (NIRCam) and Mid InfraRed Instrument (MIRI) on $JWST$ and present the resulting galaxy number counts and redshift distributions. Our fiducial model predicts that $sim1$ galaxy per field of view will be observable at $zsim11$ for a $10^4$ s exposure with NIRCam. A variant model, which produces a higher redshift of reionization in better agreement with $Planck$ data, predicts number densities of observable galaxies $sim5times$ greater at this redshift. Similar observations with MIRI are predicted not to detect any galaxies at $zgtrsim6$. We also make predictions for the effect of different exposure times on the redshift distributions of galaxies observable with $JWST$, and for the angular sizes of galaxies in $JWST$ bands.
We present a study of the trade-off between depth and resolution using a large number of U-band imaging observations in the GOODS-North field (Giavalisco et al. 2004) from the Large Binocular Camera (LBC) on the Large Binocular Telescope (LBT). Having acquired over 30 hours of data (315 images with 5-6 mins exposures), we generated multiple image mosaics, starting with the best atmospheric seeing images (FWHM $lesssim$0.8), which constitute $sim$10% of the total data set. For subsequent mosaics, we added in data with larger seeing values until the final, deepest mosaic included all images with FWHM $lesssim$1.8 ($sim$94% of the total data set). From the mosaics, we made object catalogs to compare the optimal-resolution, yet shallower image to the lower-resolution but deeper image. We show that the number counts for both images are $sim$90% complete to $U_{AB}$ $lesssim26$. Fainter than $U_{AB}$$sim$ 27, the object counts from the optimal-resolution image start to drop-off dramatically (90% between $U_{AB}$ = 27 and 28 mag), while the deepest image with better surface-brightness sensitivity ($mu^{AB}_{U}$$lesssim$ 32 mag arcsec$^{-2}$) show a more gradual drop (10% between $U_{AB}$ $simeq$ 27 and 28 mag). For the brightest galaxies within the GOODS-N field, structure and clumpy features within the galaxies are more prominent in the optimal-resolution image compared to the deeper mosaics. Finally, we find - for 220 brighter galaxies with $U_{AB}$$lesssim$ 24 mag - only marginal differences in total flux between the optimal-resolution and lower-resolution light-profiles to $mu^{AB}_{U}$$lesssim$ 32 mag arcsec$^{-2}$. In only 10% of the cases are the total-flux differences larger than 0.5 mag. This helps constrain how much flux can be missed from galaxy outskirts, which is important for studies of the Extragalactic Background Light.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا