Do you want to publish a course? Click here

A Poisson bracket on the space of Poisson structures

101   0   0.0 ( 0 )
 Added by Thomas Machon
 Publication date 2020
  fields Physics
and research's language is English
 Authors Thomas Machon




Ask ChatGPT about the research

Let $M$ be a smooth closed orientable manifold and $mathcal{P}(M)$ the space of Poisson structures on $M$. We construct a Poisson bracket on $mathcal{P}(M)$ depending on a choice of volume form. The Hamiltonian flow of the bracket acts on $mathcal{P}(M)$ by volume-preserving diffeomorphism of $M$. We then define an invariant of a Poisson structure that describes fixed points of the flow equation and compute it for regular Poisson 3-manifolds, where it detects unimodularity. For unimodular Poisson structures we define a further, related Poisson bracket and show that for symplectic structures the associated invariant counting fixed points of the flow equation is given in terms of the $d d^Lambda$ and $d+ d^Lambda$ symplectic cohomology groups defined by Tseng and Yau.



rate research

Read More

We briefly review our results on the Lie theory underlying vector bundles over Lie groupoids and Lie algebroids, pointing out the role of Poisson geometry in extending these results to double Lie algebroids and LA-groupoids.
64 - T. Koide 2021
We introduce the Poisson bracket operator which is an alternative quantum counterpart of the Poisson bracket. This operator is defined using the operator derivative formulated in quantum analysis and is equivalent to the Poisson bracket in the classical limit. Using this operator, we derive the quantum canonical equation which describes the time evolution of operators. In the standard applications of quantum mechanics, the quantum canonical equation is equivalent to the Heisenberg equation. At the same time, the quantum canonical equation is applicable to c-number canonical variables and then coincides with the canonical equation in classical mechanics. Therefore the Poisson bracket operator enables us to describe classical and quantum behaviors in a unified way. Moreover, the quantum canonical equation is applicable to non-standard system where the Heisenberg is not applicable. As an example, we consider the application to the system where a c-number and a q-number particles coexist. The derived dynamics satisfies the Ehrenfest theorem and the energy and momentum conservations.
The purpose of this paper is to investigate shifted $(+1)$ Poisson structures in context of differential geometry. The relevant notion is shifted $(+1)$ Poisson structures on differentiable stacks. More precisely, we develop the notion of Morita equivalence of quasi-Poisson groupoids. Thus isomorphism classes of $(+1)$ Poisson stack correspond to Morita equivalence classes of quasi-Poisson groupoids. In the process, we carry out the following programs of independent interests: (1) We introduce a $mathbb Z$-graded Lie 2-algebra of polyvector fields on a given Lie groupoid and prove that its homotopy equivalence class is invariant under Morita equivalence of Lie groupoids, thus can be considered as polyvector fields on the corresponding differentiable stack ${mathfrak X}$. It turns out that shifted $(+1)$ Poisson structures on ${mathfrak X}$ correspond exactly to elements of the Maurer-Cartan moduli set of the corresponding dgla. (2) We introduce the notion of tangent complex $T_{mathfrak X}$ and cotangent complex $L_{mathfrak X}$ of a differentiable stack ${mathfrak X}$ in terms of any Lie groupoid $Gamma{rightrightarrows} M$ representing ${mathfrak X}$. They correspond to homotopy class of 2-term homotopy $Gamma$-modules $A[1]rightarrow TM$ and $T^vee Mrightarrow A^vee[-1]$, respectively. We prove that a $(+1)$-shifted Poisson structure on a differentiable stack ${mathfrak X}$, defines a morphism ${L_{{mathfrak X}}}[1]to {T_{{mathfrak X}}}$.
214 - Yuji Hirota , Tosiaki Kori 2021
We shall give a twisted Dirac structure on the space of irreducible connections on a SU(n)-bundle over a three-manifold, and give a family of twisted Dirac structures on the space of irreducible connections on the trivial SU(n)-bundle over a four-manifold. The twist is described by the Cartan 3-form on the space of connections. It vanishes over the subspace of flat connections. So the spaces of flat connections are endowed with ( non-twisted ) Dirac structures. The Dirac structure on the space of flat connections over the three-manifold is obtained as the boundary restriction of a corresponding Dirac structure over the four-manifold. We discuss also the action of the group of gauge transformations over these Dirac structures.
Using methods of formal geometry, the Poisson sigma model on a closed surface is studied in perturbation theory. The effective action, as a function on vacua, is shown to have no quantum corrections if the surface is a torus or if the Poisson structure is regular and unimodular (e.g., symplectic). In the case of a Kahler structure or of a trivial Poisson structure, the partition function on the torus is shown to be the Euler characteristic of the target; some evidence is given for this to happen more generally. The methods of formal geometry introduced in this paper might be applicable to other sigma models, at least of the AKSZ type.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا