Do you want to publish a course? Click here

Isospin Pomeranchuk effect and the entropy of collective excitations in twisted bilayer graphene

141   0   0.0 ( 0 )
 Added by Yu Saito
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In condensed matter systems, higher temperatures typically disfavors ordered phases leading to an upper critical temperature for magnetism, superconductivity, and other phenomena. A notable exception is the Pomeranchuk effect in 3He, in which the liquid ground state freezes upon increasing the temperature due to the large entropy of the paramagnetic solid phase. Here we show that a similar mechanism describes the finite temperature dynamics of spin and valley-isospins in magic-angle twisted bilayer graphene. Most strikingly a resistivity peak appears at high temperatures near superlattice filling factor nu = -1, despite no signs of a commensurate correlated phase appearing in the low-temperature limit. Tilted field magnetotransport and thermodynamic measurements of the inplane magnetic moment show that the resistivity peak is adiabatically connected to a finite-field magnetic phase transition at which the system develops finite isospin polarization. These data are suggestive of a Pomeranchuk-type mechanism, in which the entropy of disordered isospin moments in the ferromagnetic phase stabilizes it relative to an isospin unpolarized Fermi liquid phase at elevated temperatures. Measurements of the entropy, S/kB indeed find it to be of order unity per unit cell area, with a measurable fraction that is suppressed by an in-plane magnetic field consistent with a contribution from disordered physical spins. In contrast to 3He, however, no discontinuities are observed in the thermodynamic quantities across this transition. Our findings imply a small isospin stiffness, with implications for the nature of finite temperature transport as well as the mechanisms underlying isospin ordering and superconductivity in twisted bilayer graphene and related systems.



rate research

Read More

When bilayer graphene is rotationally faulted to an angle $thetaapprox 1.1^circ$, theory predicts the formation of a flat electronic band and correlated insulating, superconducting, and ferromagnetic states have all been observed at partial band filling. The proximity of superconductivity to correlated insulators has suggested a close relationship between these states, reminiscent of the cuprates where superconductivity arises by doping a Mott insulator. Here, we show that superconductivity can appear without correlated insulating states. While both superconductivity and correlated insulating behavior are strongest near the flat band condition, superconductivity survives to larger detuning of the angle. Our observations are consistent with a competing phases picture, in which insulators and superconductivity arise from disparate mechanisms.
When twisted to angles near 1{deg}, graphene multilayers provide a new window on electron correlation physics by hosting gate-tuneable strongly-correlated states, including insulators, superconductors, and unusual magnets. Here we report the discovery of a new member of the family, density-wave states, in double bilayer graphene twisted to 2.37{deg}. At this angle the moire states retain much of their isolated bilayer character, allowing their bilayer projections to be separately controlled by gates. We use this property to generate an energetic overlap between narrow isolated electron and hole bands with good nesting properties. Our measurements reveal the formation of ordered states with reconstructed Fermi surfaces, consistent with density-wave states, for equal electron and hole densities. These states can be tuned without introducing chemical dopants, thus opening the door to a new class of fundamental studies of density-waves and their interplay with superconductivity and other types of order, a central issue in quantum matter physics.
Topological insulators realized in materials with strong spin-orbit interactions challenged the long-held view that electronic materials are classified as either conductors or insulators. The emergence of controlled, two-dimensional moire patterns has opened new vistas in the topological materials landscape. Here we report on evidence, obtained by combining thermodynamic measurements, local and non-local transport measurements, and theoretical calculations, that robust topologically non-trivial, valley Chern insulators occur at charge neutrality in twisted double-bilayer graphene (TDBG). These time reversal-conserving valley Chern insulators are enabled by valley-number conservation, a symmetry that emerges from the moire pattern. The thermodynamic gap extracted from chemical potential measurements proves that TDBG is a bulk insulator under transverse electric field, while transport measurements confirm the existence of conducting edge states. A Landauer-Buttiker analysis of measurements on multi-terminal samples allows us to quantitatively assess edge state scattering and demonstrate that it does not destroy the edge states, leaving the bulk-boundary correspondence largely intact.
Twisted graphene bilayers provide a versatile platform to engineer metamaterials with novel emergent properties by exploiting the resulting geometric moir{e} superlattice. Such superlattices are known to host bulk valley currents at tiny angles ($alphaapprox 0.3 ^circ$) and flat bands at magic angles ($alpha approx 1^circ$). We show that tuning the twist angle to $alpha^*approx 0.8^circ$ generates flat bands away from charge neutrality with a triangular superlattice periodicity. When doped with $pm 6$ electrons per moire cell, these bands are half-filled and electronic interactions produce a symmetry-broken ground state (Stoner instability) with spin-polarized regions that order ferromagnetically. Application of an interlayer electric field breaks inversion symmetry and introduces valley-dependent dispersion that quenches the magnetic order. With these results, we propose a solid-state platform that realizes electrically tunable strong correlations.
A detailed understanding of interacting electrons in twisted bilayer graphene (tBLG) near the magic angle is required to gain insights into the physical origin of the observed broken symmetry phases. Here, we present extensive atomistic Hartree theory calculations of the electronic properties of tBLG in the (semi-)metallic phase as function of doping and twist angle. Specifically, we calculate quasiparticle properties, such as the band structure, density of states (DOS) and local density of states (LDOS), which are directly accessible in photoemission and tunnelling spectroscopy experiments. We find that quasiparticle properties change significantly upon doping - an effect which is not captured by tight-binding theory. In particular, we observe that the partially occupied bands flatten significantly which enhances the density of states at the Fermi level. We predict a clear signature of this band flattening in the LDOS in the AB/BA regions of tBLG which can be tested in scanning tunneling experiments. We also study the dependence of quasiparticle properties on the dielectric environment of tBLG and discover that these properties are surprisingly robust as a consequence of the strong internal screening. Finally, we present a simple analytical expression for the Hartree potential which enables the determination of quasiparticle properties without the need for self-consistent calculations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا