Do you want to publish a course? Click here

Possible precise measurements of the $X(3872)$ mass with the $e^+e^-topi^0gamma X(3872)$ and $pbar ptogamma X(3872)$ reactions

103   0   0.0 ( 0 )
 Added by Shuntaro Sakai
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

It was recently proposed that the $X(3872)$ binding energy, the difference between the $D^0bar D^{*0}$ threshold and the $X(3872)$ mass, can be precisely determined by measuring the $gamma X(3872)$ line shape from a short-distance $D^{*0}bar D^{*0}$ source produced at high-energy experiments. Here, we investigate the feasibility of such a proposal by estimating the cross sections for the $e^+e^-topi^0gamma X(3872)$ and $pbar ptogamma X(3872)$ processes considering the $D^{*0}bar D^{*0}D^0/bar D^{*0}D^{*0}bar D^0$ triangle loops. These loops can produce a triangle singularity slightly above the $D^{*0}bar D^{*0}$ threshold. It is found that the peak structures originating from the $D^{*0}bar D^{*0}$ threshold cusp and the triangle singularity are not altered much by the energy dependence introduced by the $e^+e^-topi^0D^{*0}bar D^{*0}$ and $pbar ptobar D^{*0}D^{*0}$ production parts or by considering a finite width for the $X(3872)$. We find that $sigma(e^+e^-topi^0gamma X(3872)) times {rm Br}(X(3872)topi^+pi^-J/psi)$ is $mathcal{O}(0.1~{rm fb})$ with the $gamma X(3872)$ invariant mass integrated from 4.01 to 4.02 GeV and the c.m. energy of the $e^+e^-$ pair fixed at 4.23 GeV. The cross section $sigma(pbar ptogamma X(3872))times {rm Br}(X(3872)topi^+pi^-J/psi)$ is estimated to be of $mathcal{O}(10~{rm pb})$. Our results suggest that a precise measurement of the $X(3872)$ binding energy can be done at PANDA.



rate research

Read More

If the $X(3872)$ is a weakly bound charm-meson molecule, it can be produced in $e^+ e^-$ annihilation by the creation of $D^{*0} bar D^{*0}$ from a virtual photon followed by the rescattering of the P-wave charm-meson pair into the $X$ and a photon. A triangle singularity produces a narrow peak in the cross section for $e^+ e^- to X gamma$ 2.2 MeV above the $D^{*0} bar{D}^{*0}$ threshold. We predict the normalized cross section in the region of the peak. We show that the absorptive contribution to the cross section for $e^+ e^- to D^{*0} bar D^{*0} to X gamma$, which was calculated previously by Dubynskiy and Voloshin, does not give a good approximation to the peak from the triangle singularity.
Using data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies from 4.178 to 4.600 GeV, we study the process $e^+e^-rightarrowpi^{0}X(3872)gamma$ and search for $Z_c(4020)^{0}rightarrow X(3872)gamma$. We find no significant signal and set upper limits on $sigma(e^+e^-rightarrowpi^{0}X(3872)gamma)cdotmathcal{B}(X(3872)rightarrowpi^{+}pi^{-}J/psi)$ and $sigma(e^+e^-rightarrowpi^{0}Z_c(4020)^{0})cdotmathcal{B}(Z_c(4020)^{0}rightarrow X(3872)gamma)cdotmathcal{B}(X(3872)rightarrowpi^{+}pi^{-}J/psi)$ for each energy point at $90%$ confidence level, which is of the order of several tenths pb.
With data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies from 4.009 to 4.420 GeV, the process $e^{+} e^{-} to gamma X(3872)$ is observed for the first time with a statistical significance of $6.3sigma$. The measured mass of the $X(3872)$ is ($3871.9pm 0.7_{rm stat.}pm 0.2_{rm sys.}$) MeV/$c^2$, in agreement with previous measurements. Measurements of the product of the cross section $sigma[e^{+} e^{-} to gamma X(3872)]$ and the branching fraction $mathcal{B}[X(3872) to pi^{+} pi^{-} J/psi]$ at center-of-mass energies 4.009, 4.229, 4.260, and 4.360 GeV are reported. Our measurements are consistent with expectations for the radiative transition process $Y(4260) to gamma X(3872)$.
We report the first observation of $B^0 to X(3872) (K^{+}pi^{-})$ and evidence for $B^+ to X(3872) (K^{0}pi^{+})$. We measure the product of branching fractions for the former to be ${cal B}(B^0 to X(3872) (K^+ pi^-)) times {cal B}(X(3872) to J/psi pi^+ pi^-) = (7.9 pm 1.3(mbox{stat.})pm 0.4(mbox{syst.})) times 10^{-6}$ and find that $B^{0}to X(3872) K^{*}(892)^{0}$ does not dominate the $B^{0}to X(3872)K^{+}pi^{-}$ decay mode. We also measure ${cal B}(B^+ to X(3872) (K^0 pi^+)) times {cal B}(X(3872) to J/psi pi^+ pi^-) = (10.6 pm 3.0(mbox{stat.}) pm 0.9(mbox{syst.})) times 10^{-6}$. This study is based on the full data sample of 711~fb$^{-1}$ ($772times 10^6 Bbar B$ pairs) collected at the $Upsilon(4S)$ resonance with the Belle detector at the KEKB collider.
If the $X(3872)$ is a weakly bound charm-meson molecule, it can be produced in $e^+ e^-$ annihilation by the creation of $D^{*0} bar D^{*0}$ from a virtual photon followed by the rescattering of the charm-meson pair into $X$ and a photon. A triangle singularity produces a narrow peak in the cross section for $e^+ e^- to X gamma$ about 2.2 MeV above the $D^{*0} bar{D}^{*0}$ threshold. We predict the normalized cross section in the region near the peak. The peak from the triangle singularity may be observable by the BESIII detector.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا