No Arabic abstract
Giant flares (GFs) are unusual bursts from soft gamma-ray repeaters (SGRs) that release an enormous amount of energy in a fraction of a second. The afterglow emission of these SGR-GFs or GF candidates is a highly beneficial means of discerning their composition, relativistic speed, and emission mechanisms. GRB 200415A is a recent GF candidate observed in a direction coincident with the nearby Sculptor galaxy at 3.5 Mpc. In this work, we searched for transient gamma-ray emission in past observations by Fermi-LAT in the direction of GRB 200415A. These observations confirm that GRB 200415A is observed as a transient GeV source only once. A pure pair-plasma fireball cannot provide the required energy for the interpretation of GeV afterglow emission and a baryonic poor outflow is additionally needed to explain the afterglow emission. A baryonic rich outflow is also viable, as it can explain the variability and observed quasi-thermal spectrum of the prompt emission if dissipation is happening below the photosphere via internal shocks. Using the peak energy ($E_p$) of the time-resolved prompt emission spectra and their fluxes ($F_p$), we found correlation between $E_p$ and $F_p$ or $E_p$ and isotropic luminosity $L_{rm iso}$ for GRB 200415A. This supports the intrinsic nature of $E_p$-$E_{rm iso}$ correlation found in SGRs-GFs, hence favoring a baryonic poor outflow. Our results also indicate a different mechanism at work during the initial spike, and that the evolution of the prompt emission spectral properties in this outflow would be intrinsically due to the injection process.
The giant flares of soft gamma-ray repeaters (SGRs) have long been proposed to contribute to at least a subsample of the observed short gamma-ray bursts (GRBs). In this paper, we perform a comprehensive analysis of the high-energy data of the recent bright short GRB 200415A, which was located close to the Sculptor galaxy. Our results suggest that a magnetar giant flare provides the most natural explanation for most observational properties of GRB 200415A, including its location, temporal and spectral features, energy, statistical correlations, and high-energy emissions. On the other hand, the compact star merger GRB model is found to have difficulty reproducing such an event in a nearby distance. Future detections and follow-up observations of similar events are essential to firmly establish the connection between SGR giant flares and a subsample of nearby short GRBs.
GRB 131231A was detected by the Large Area Telescope onboard Fermi Space Gamma-ray Telescope. The high energy gamma-ray ($> 100$ MeV) afterglow emission spectrum is $F_ u propto u^{-0.54pm0.15}$ in the first $sim 1300$ s after the trigger and the most energetic photon has an energy $sim 62$ GeV arriving at $tsim 520$ s. With reasonable parameters of the GRB outflow as well as the density of the circum-burst medium, the synchrotron radiation of electrons or protons accelerated at an external forward shock have difficulty accounting for the data. The synchrotron self-Compton radiation of the forward shock-accelerated electrons, instead, can account for both the spectrum and temporal behavior of the GeV afterglow emission. We also show that the prospect for detecting GRB 131231A$-$like GRBs with Cherenkov Telescope Array (CTA) is promising.
Besides light curves and spectra, polarization provides a different powerful tool of studying the $gamma-$ray burst (GRB) prompt phase. Compared with the time-integrated and energy-integrated polarization, time-resolved and energy-resolved polarization can deliver more physical information about the emitting region. Here we investigate time-resolved and energy-resolved polarization of GRB prompt emission using the synchrotron models. We find that the equal arrival time surface effect is very important in shaping the PD curves when the physical conditions of emitting region changes violently with radius. Polarization properties are neither correlated with the spectral lag nor the peak energy evolution patterns. Polarization properties with a mixed magnetic field are very similar to those for a corresponding ordered magnetic field but the former has a smaller polarization degree. The emission at the MeV peak can be highly polarized for a synchrotron model while it is unpolarized as predicted by a dissipative photosphere model. Future energy-resolved polarization observations can distinguish between these two models.
Gamma-ray bursts (GRBs) show different behaviours and trends in their spectral evolution. One of the methods used to understand the physical origin of these behaviours is to study correlation between the spectral fit parameters. In this work, we used a Bayesian analysis method to fit time-resolved spectra of GRB pulses that were detected by the textit{Fermi}/GBM during its first 9 years of mission. We studied single pulsed long bursts ($T_{90}geq2$ s). Among all the parameter correlations, we found that the correlation between the low-energy power-law index $alpha$ and the energy flux exhibited a systematic behaviour. We presented the properties of the observed characteristics of this behaviour and interpreted it in the context of the photospheric emission model.
Magnetars are young, highly magnetized neutron stars that produce extremely rare giant flares of gamma-rays, the most luminous astrophysical phenomena in our Galaxy. The detection of these flares from outside the Local Group of galaxies has been predicted, with just two candidates so far. Here we report on the extremely bright gamma-ray flare GRB 200415A of April 15, 2020, which we localize, using the Interplanetary Network, to a tiny (20 sq. arcmin) area on the celestial sphere, that overlaps the central region of the Sculptor galaxy at 3.5 Mpc from the Milky Way. From the Konus-Wind detections, we find a striking similarity between GRB 200415A and GRB 051103, the even more energetic flare that presumably originated from the M81/M82 group of galaxies at nearly the same distance (3.6 Mpc). Both bursts display a sharp, millisecond-scale, hard-spectrum initial pulse, followed by an approximately 0.2 s long steadily fading and softening tail. Apart from the huge initial pulses of magnetar giant flares, no astrophysical signal with this combination of temporal and spectral properties and implied energy has been reported previously. At the inferred distances, the energy released in both flares is on par with that of the December 27, 2004 superflare from the Galactic magnetar SGR 1806-20, but with a higher peak luminosity. Taken all together, this makes GRB 200415A and its twin GRB 051103 the most significant candidates for extragalactic magnetar giant flares, both a factor of five more luminous than the brightest Galactic magnetar flare observed previously, thus providing an important step towards a better understanding of this fascinating phenomenon.