Do you want to publish a course? Click here

Polarization of GRB Prompt Emission and its Application to POLARs Data

82   0   0.0 ( 0 )
 Added by Mi-Xiang Lan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Synchrotron emission polarization is very sensitive to the magnetic field configuration. Recently, polarization of synchrotron emission with a mixed (SM) magnetic field in Gamma-ray burst (GRB) afterglow phase had been developed. Here, we apply these SM models to GRB prompt phase and compare their polarization properties with that of synchrotron emission in purely ordered (SO) magnetic field. We find that the polarization properties in a SM model are very similar to these in a corresponding SO model (e.g., synchrotron emission in a mixed magnetic field with an aligned ordered part (SMA) and synchrotron emission with a purely ordered aligned magnetic field (SOA)), only with a lower polarization degree (PD). We also discuss the statistical properties of the models. We find PDs of the simulated bursts are concentrated around $25%$ for both SOA and synchrotron emission in a purely ordered toroidal magnetic field (SOT), while they can range from $0%$ to $25%$ for SMA and synchrotron emission in a mixed magnetic field with a toroidal ordered part (SMT), depending on $xi_B$ value, i.e., the ratio of magnetic reduction of the ordered magnetic field over that of random magnetic field. From statistics, if PDs of majority GRBs are non-zero, then it favours SO and SM models. Further, if there are some bright GRBs with a prominently lower PDs than that of the majority GRBs, it favours SOT (SMT) models; if all the bright GRBs have comparable PDs with the majority ones, it favours SOA (SMA) models. Finally, we apply our results to POLARs data and find that $sim10%$ time-integrated PDs of the observed bursts favor SMA and SMT models, and $xi_B$ parameter of these bursts is constrained to be around 1.135.



rate research

Read More

We report the polarization measurement in prompt $gamma$-ray emission of GRB 100826A with the Gamma-Ray Burst Polarimeter (GAP) aboard the small solar power sail demonstrator IKAROS. We detected the firm change of polarization angle (PA) during the prompt emission with 99.9% ($3.5 sigma$) confidence level, and the average polarization degree ($Pi$) of $27 pm 11$% with 99.4% ($2.9 sigma$) confidence level. Here the quoted errors are given at 1 $sigma$ confidence level for two parameters of interest. The systematic errors have been carefully included in this analysis, unlike any previous reports. Such a high $Pi$ can be obtained in several emission models of gamma-ray bursts (GRBs), including synchrotron and photospheric models. However, it is difficult to explain the observed significant change of PA within the framework of axisymmetric jet as considered in many theoretical works. The non-axisymmetric (e.g., patchy) structures of the magnetic fields and/or brightness inside the relativistic jet are therefore required within the observable angular scale of $sim Gamma^{-1}$. Our observation strongly indicates that the polarization measurement is a powerful tool to constrain the GRB production mechanism, and more theoretical works are needed to discuss the data in more details.
We present spectro-polarimetric analysis of thisgrb using data from asat, fermi, and swift, to provide insights into the physical mechanisms of the prompt radiation and the jet geometry. Prompt emission from thisgrb was very bright (fluence $>10^{-4}$~ergs~cm$^{-2}$) and had a complex structure composed of the superimposition of several pulses. The energy spectra deviate from the typical Band function to show a low energy peak $sim 15$~keV --- which we interpret as a power-law with two breaks, with a synchrotron origin. Alternately, the prompt spectra can also be interpreted as Comptonized emission, or a blackbody combined with a Band function. Time-resolved analysis confirms the presence of the low energy component, while the peak energy is found to be confined in the range of 100--200~keV. Afterglow emission detected by fermi-LAT is typical of an external shock model, and we constrain the initial Lorentz factor using the peak time of the emission. swift-XRT measurements of the afterglow show an indication for a jet break, allowing us to constrain the jet opening angle to $>$ 6$degr$. Detection of a large number of Compton scattered events by asat-CZTI provides an opportunity to study hard X-ray polarization of the prompt emission. We find that the burst has high, time-variable polarization, with the emission {bf have higher polarization} at energies above the peak energy. We discuss all observations in the context of GRB models and polarization arising due to {bf due to physical or geometric effects:} synchrotron emission from multiple shocks with ordered or random magnetic fields, Poynting flux dominated jet undergoing abrupt magnetic dissipation, sub-photospheric dissipation, a jet consisting of fragmented fireballs, and the Comptonization model.
The mechanism that causes the prompt-emission episode of gamma-ray bursts (GRBs) is still widely debated despite there being thousands of prompt detections. The favoured internal shock model relates this emission to synchrotron radiation. However, it does not always explain the spectral indices of the shape of the spectrum, often fit with empirical functions. Multi-wavelength observations are therefore required to help investigate the possible underlying mechanisms that causes the prompt emission. We present GRB 121217A, for which we were able to observe its near-infrared (NIR) emission during a secondary prompt-emission episode with the Gamma-Ray Burst Optical Near-infrared Detector (GROND) in combination with the Swift and Fermi satellites, covering an energy range of 0.001 keV to 100 keV. We determine a photometric redshift of z=3.1+/-0.1 with a line-of-sight extinction of A_V~0 mag, utilising the optical/NIR SED. From the afterglow, we determine a bulk Lorentz factor of Gamma~250 and an emission radius of R<10^18 cm. The prompt-emission broadband spectral energy distribution is well fit with a broken power law with b1=-0.3+/-0.1, b2=0.6+/-0.1 that has a break at E=6.6+/-0.9 keV, which can be interpreted as the maximum injection frequency. Self-absorption by the electron population below energies of E_a<6 keV suggest a magnetic field strength of B~10^5 G. However, all the best fit models underpredict the flux observed in the NIR wavelengths, which also only rebrightens by a factor of ~2 during the second prompt emission episode, in stark contrast to the X-ray emission, which rebrightens by a factor of ~100, suggesting an afterglow component is dominating the emission. We present GRB 121217A one of the few GRBs for which there are multi-wavelength observations of the prompt-emission period and show that it can be understood with a synchrotron radiation model.
After more than 40 years from their discovery, the long-lasting tension between predictions and observations of GRBs prompt emission spectra starts to be solved. We found that the observed spectra can be produced by the synchrotron process, if the emitting particles do not completely cool. Evidence for incomplete cooling was recently found in Swift GRBs spectra with prompt observations down to 0.5 keV (Oganesyan et al. 2017, 2018), characterized by an additional low-energy break. In order to search for this break at higher energies, we analysed the 10 long and 10 short brightest GRBs detected by the Fermi satellite in over 10 years of activity. We found that in 8/10 long GRBs there is compelling evidence of a low energy break (below the peak energy) and the photon indices below and above that break are remarkably consistent with the values predicted by the synchrotron spectrum (-2/3 and -3/2, respectively). None of the ten short GRBs analysed shows a break, but the low energy spectral slope is consistent with -2/3. Within the framework of the GRB standard model, these results imply a very low magnetic field in the emission region, at odds with expectations. I also present the spectral evolution of GRB 190114C, the first GRB detected with high significance by the MAGIC Telescopes, which shows the compresence (in the keV-MeV energy range) of the prompt and of the afterglow emission, the latter rising and dominating the high energy part of the spectral energy range.
In this work, we present the results obtained from a multi-wavelength campaign, as well as from the public Swift/BAT, XRT, and UVOT data of GRB 060111B for which a bright optical emission was measured with good temporal resolution during the prompt phase. We identified the host galaxy at R~25 mag; its featureless spectral continuum and brightness, as well as the non-detection of any associated supernova 16 days after the trigger and other independent redshift estimates, converge to z~1-2. From the analysis of the early afterglow SED, we find that non-negligible host galaxy dust extinction, in addition to the Galactic one, affects the observed flux in the optical regime. The extinction-corrected optical-to-gamma-ray spectral energy distribution during the prompt emission shows a flux density ratio $F_{gamma}/F_{opt}$=0.01-0.0001 with spectral index $beta_{gamma,opt}> beta_{gamma}$, strongly suggesting a separate origin of the optical and gamma-ray components. This result is supported by the lack of correlated behavior in the prompt emission light curves observed in the two energy domains. The properties of the prompt optical emission observed during GRB 060111B favor interpretation of this optical light as radiation from the reverse shock in a thick shell limit and in the slow cooling regime. The expected peak flux is consistent with the observed one corrected for the host extinction, likely indicating that the starting time of the TAROT observations is very near to or coincident with the peak time. The estimated fireball initial Lorentz factor is >260-360 at z=1-2, similar to the Lorentz factors obtained from other GRBs. GRB 060111B is a rare, good test case of the reverse shock emission mechanism in both the X-ray and optical energy ranges.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا