No Arabic abstract
To the best of our knowledge, the existing deep-learning-based Video Super-Resolution (VSR) methods exclusively make use of videos produced by the Image Signal Processor (ISP) of the camera system as inputs. Such methods are 1) inherently suboptimal due to information loss incurred by non-invertible operations in ISP, and 2) inconsistent with the real imaging pipeline where VSR in fact serves as a pre-processing unit of ISP. To address this issue, we propose a new VSR method that can directly exploit camera sensor data, accompanied by a carefully built Raw Video Dataset (RawVD) for training, validation, and testing. This method consists of a Successive Deep Inference (SDI) module and a reconstruction module, among others. The SDI module is designed according to the architectural principle suggested by a canonical decomposition result for Hidden Markov Model (HMM) inference; it estimates the target high-resolution frame by repeatedly performing pairwise feature fusion using deformable convolutions. The reconstruction module, built with elaborately designed Attention-based Residual Dense Blocks (ARDBs), serves the purpose of 1) refining the fused feature and 2) learning the color information needed to generate a spatial-specific transformation for accurate color correction. Extensive experiments demonstrate that owing to the informativeness of the camera raw data, the effectiveness of the network architecture, and the separation of super-resolution and color correction processes, the proposed method achieves superior VSR results compared to the state-of-the-art and can be adapted to any specific camera-ISP. Code and dataset are available at https://github.com/proteus1991/RawVSR.
Most recent video super-resolution (SR) methods either adopt an iterative manner to deal with low-resolution (LR) frames from a temporally sliding window, or leverage the previously estimated SR output to help reconstruct the current frame recurrently. A few studies try to combine these two structures to form a hybrid framework but have failed to give full play to it. In this paper, we propose an omniscient framework to not only utilize the preceding SR output, but also leverage the SR outputs from the present and future. The omniscient framework is more generic because the iterative, recurrent and hybrid frameworks can be regarded as its special cases. The proposed omniscient framework enables a generator to behave better than its counterparts under other frameworks. Abundant experiments on public datasets show that our method is superior to the state-of-the-art methods in objective metrics, subjective visual effects and complexity. Our code will be made public.
The video super-resolution (VSR) task aims to restore a high-resolution (HR) video frame by using its corresponding low-resolution (LR) frame and multiple neighboring frames. At present, many deep learning-based VSR methods rely on optical flow to perform frame alignment. The final recovery results will be greatly affected by the accuracy of optical flow. However, optical flow estimation cannot be completely accurate, and there are always some errors. In this paper, we propose a novel deformable non-local network (DNLN) which is a non-optical-flow-based method. Specifically, we apply the deformable convolution and improve its ability of adaptive alignment at the feature level. Furthermore, we utilize a non-local structure to capture the global correlation between the reference frame and the aligned neighboring frames, and simultaneously enhance desired fine details in the aligned frames. To reconstruct the final high-quality HR video frames, we use residual in residual dense blocks to take full advantage of the hierarchical features. Experimental results on benchmark datasets demonstrate that the proposed DNLN can achieve state-of-the-art performance on VSR task.
This paper presents a dual camera system for high spatiotemporal resolution (HSTR) video acquisition, where one camera shoots a video with high spatial resolution and low frame rate (HSR-LFR) and another one captures a low spatial resolution and high frame rate (LSR-HFR) video. Our main goal is to combine videos from LSR-HFR and HSR-LFR cameras to create an HSTR video. We propose an end-to-end learning framework, AWnet, mainly consisting of a FlowNet and a FusionNet that learn an adaptive weighting function in pixel domain to combine inputs in a frame recurrent fashion. To improve the reconstruction quality for cameras used in reality, we also introduce noise regularization under the same framework. Our method has demonstrated noticeable performance gains in terms of both objective PSNR measurement in simulation with different publicly available video and light-field datasets and subjective evaluation with real data captured by dual iPhone 7 and Grasshopper3 cameras. Ablation studies are further conducted to investigate and explore various aspects (such as reference structure, camera parallax, exposure time, etc) of our system to fully understand its capability for potential applications.
Cardiac Magnetic Resonance Imaging (CMR) is widely used since it can illustrate the structure and function of heart in a non-invasive and painless way. However, it is time-consuming and high-cost to acquire the high-quality scans due to the hardware limitation. To this end, we propose a novel end-to-end trainable network to solve CMR video super-resolution problem without the hardware upgrade and the scanning protocol modifications. We incorporate the cardiac knowledge into our model to assist in utilizing the temporal information. Specifically, we formulate the cardiac knowledge as the periodic function, which is tailored to meet the cyclic characteristic of CMR. In addition, the proposed residual of residual learning scheme facilitates the network to learn the LR-HR mapping in a progressive refinement fashion. This mechanism enables the network to have the adaptive capability by adjusting refinement iterations depending on the difficulty of the task. Extensive experimental results on large-scale datasets demonstrate the superiority of the proposed method compared with numerous state-of-the-art methods.
In real-world single image super-resolution (SISR) task, the low-resolution image suffers more complicated degradations, not only downsampled by unknown kernels. However, existing SISR methods are generally studied with the synthetic low-resolution generation such as bicubic interpolation (BI), which greatly limits their performance. Recently, some researchers investigate real-world SISR from the perspective of the camera and smartphone. However, except the acquisition equipment, the display device also involves more complicated degradations. In this paper, we focus on the camera-screen degradation and build a real-world dataset (Cam-ScreenSR), where HR images are original ground truths from the previous DIV2K dataset and corresponding LR images are camera-captur