No Arabic abstract
Podcast summary, an important factor affecting end-users listening decisions, has often been considered a critical feature in podcast recommendation systems, as well as many downstream applications. Existing abstractive summarization approaches are mainly built on fine-tuned models on professionally edited texts such as CNN and DailyMail news. Different from news, podcasts are often longer, more colloquial and conversational, and noisier with contents on commercials and sponsorship, which makes automatic podcast summarization extremely challenging. This paper presents a baseline analysis of podcast summarization using the Spotify Podcast Dataset provided by TREC 2020. It aims to help researchers understand current state-of-the-art pre-trained models and hence build a foundation for creating better models.
Podcast summarization is different from summarization of other data formats, such as news, patents, and scientific papers in that podcasts are often longer, conversational, colloquial, and full of sponsorship and advertising information, which imposes great challenges for existing models. In this paper, we focus on abstractive podcast summarization and propose a two-phase approach: sentence selection and seq2seq learning. Specifically, we first select important sentences from the noisy long podcast transcripts. The selection is based on sentence similarity to the reference to reduce the redundancy and the associated latent topics to preserve semantics. Then the selected sentences are fed into a pre-trained encoder-decoder framework for the summary generation. Our approach achieves promising results regarding both ROUGE-based measures and human evaluations.
This paper contains the description of our submissions to the summarization task of the Podcast Track in TREC (the Text REtrieval Conference) 2020. The goal of this challenge was to generate short, informative summaries that contain the key information present in a podcast episode using automatically generated transcripts of the podcast audio. Since podcasts vary with respect to their genre, topic, and granularity of information, we propose two summarization models that explicitly take genre and named entities into consideration in order to generate summaries appropriate to the style of the podcasts. Our models are abstractive, and supervised using creator-provided descriptions as ground truth summaries. The results of the submitted summaries show that our best model achieves an aggregate quality score of 1.58 in comparison to the creator descriptions and a baseline abstractive system which both score 1.49 (an improvement of 9%) as assessed by human evaluators.
Pointer-generator network is an extremely popular method of text summarization. More recent works in this domain still build on top of the baseline pointer generator by augmenting a content selection phase, or by decomposing the decoder into a contextual network and a language model. However, all such models that are based on the pointer-generator base architecture cannot generate novel words in the summary and mostly copy words from the source text. In our work, we first thoroughly investigate why the pointer-generator network is unable to generate novel words, and then address that by adding an Out-of-vocabulary (OOV) penalty. This enables us to improve the amount of novelty/abstraction significantly. We use normalized n-gram novelty scores as a metric for determining the level of abstraction. Moreover, we also report rouge scores of our model since most summarization models are evaluated with R-1, R-2, R-L scores.
Summarization based on text extraction is inherently limited, but generation-style abstractive methods have proven challenging to build. In this work, we propose a fully data-driven approach to abstractive sentence summarization. Our method utilizes a local attention-based model that generates each word of the summary conditioned on the input sentence. While the model is structurally simple, it can easily be trained end-to-end and scales to a large amount of training data. The model shows significant performance gains on the DUC-2004 shared task compared with several strong baselines.
Existing summarization systems mostly generate summaries purely relying on the content of the source document. However, even for humans, we usually need some references or exemplars to help us fully understand the source document and write summaries in a particular format. But how to find the high-quality exemplars and incorporate them into summarization systems is still challenging and worth exploring. In this paper, we propose RetrievalSum, a novel retrieval enhanced abstractive summarization framework consisting of a dense Retriever and a Summarizer. At first, several closely related exemplars are retrieved as supplementary input to help the generation model understand the text more comprehensively. Furthermore, retrieved exemplars can also play a role in guiding the model to capture the writing style of a specific corpus. We validate our method on a wide range of summarization datasets across multiple domains and two backbone models: BERT and BART. Results show that our framework obtains significant improvement by 1.38~4.66 in ROUGE-1 score when compared with the powerful pre-trained models, and achieve new state-of-the-art on BillSum. Human evaluation demonstrates that our retrieval enhanced model can better capture the domain-specific writing style.