Do you want to publish a course? Click here

Time delay between outer heliosheath crossing and observation of interstellar neutral atoms

80   0   0.0 ( 0 )
 Added by Maciej Bzowski
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In situ measurements of the heliospheric particle populations by the Voyager spacecraft can only be put in an appropriate context with remote-sensing observations of energetic and interstellar neutral atoms (ENAs and ISN, respectively) at 1 au when the time delay between the production and the observation times is taken into account. ENA times of flight from the production regions in the heliosheath are relatively easy to estimate because these atoms follow almost constant speed, force-free trajectories. For the ISN populations, dynamical and ballistic selection effects are important, and times of flight are much longer. We estimate these times for ISN He and H atoms observed by IBEX and in the future by IMAP using the WTPM model with synthesis method. We show that for the primary population atoms, the times of flight are on the order of three solar cycle periods, with a spread equivalent to one solar cycle. For the secondary populations, the times of flight are on the order of ten solar cycle periods, and during the past ten years of observations, IBEX has been collecting secondary He atoms produced in the OHS during almost entire 19th century. ISN atoms penetrating the heliopause at the time of Voyager crossing will become gradually visible about 2027, during the planned IMAP observations. Hypothetical variations in the ISN flow in the Local Interstellar Medium are currently not detectable. Nevertheless, we expect steady-state heliosphere models used with appropriately averaged solar wind parameters to be suitable for understanding the ISN observations.



rate research

Read More

65 - M. Bzowski , A. Galli 2018
Interstellar neutral hydrogen (ISN H) gas penetrates freely the heliopause. Inside the inner heliosheath, the charge-exchange interaction of this gas with the shocked solar wind and pickup ions creates energetic neutral atoms (ENAs). ISN H is strongly depleted inside the termination shock but a fraction reaches the Earths orbit. In these regions of the heliosphere, ISN H is the source population for interstellar pickup ions and for the heliospheric backscatter glow. The Globally Distributed Flux (GDF) of ENAs created in the inner heliosheath has been sampled directly by Interstellar Boundary Explorer (IBEX). Based on these measurements, we calculate the density of the GDF ENA population at the Earths orbit. We find that this number density is between $10^{-4}$ and $10^{-3}$ cm$^{-3}$, i.e., comparable in magnitude to the number density of ISN H in the downwind portion of the Earths orbit. Half of this atom population have energies less than $sim 80$ eV. This GDF population of neutral hydrogen is likely to provide a significant contribution to the intensity of heliospheric glow in the downwind hemisphere, may be the source of the inner source of hydrogen pickup ions, and may be responsible for the excess of production of pickup ions found in the analysis of magnetic wave events induced by the proton pickup process in the downwind region at 1 au from the Sun.
A recently discovered filament of polarized starlight that traces a coherent magnetic field is shown to have several properties that are consistent with an origin in the outer heliosheath of the heliosphere: (1) The magnetic field that provides the best fit to the polarization position angles is directed within 6.7+-11 degrees of the observed upwind direction of the flow of interstellar neutral helium gas through the heliosphere. (2) The magnetic field is ordered; the component of the variation of the polarization position angles that can be attributed to magnetic turbulence is small. (3) The axis of the elongated filament can be approximated by a line that defines an angle of 80+/-14 degrees with the plane that is formed by the interstellar magnetic field vector and the vector of the inflowing neutral gas (the BV plane). We propose that this polarization feature arises from aligned interstellar dust grains in the outer heliosheath where the interstellar plasma and magnetic field are deflected around the heliosphere. The proposed outer heliosheath location of the polarizing grains requires confirmation by modeling grain-propagation through three-dimensional MHD heliosphere models that simultaneously calculate torques on asymmetric dust grains interacting with the heliosphere.
In astrophysical systems with partially ionized plasma the motion of ions is governed by the magnetic field while the neutral particles can only feel the magnetic fields Lorentz force indirectly through collisions with ions. The drift in the velocity between ionized and neutral species plays a key role in modifying important physical processes like magnetic reconnection, damping of magnetohydrodynamic waves, transport of angular momentum in plasma through the magnetic field, and heating. This paper investigates the differences between Doppler velocities of calcium ions and neutral hydrogen in a solar prominence to look for velocity differences between the neutral and ionized species. We simultaneously observed spectra of a prominence over an active region in H I 397 nm, H I 434 nm, Ca II 397 nm, and Ca II 854 nm using a high dispersion spectrograph of the Domeless Solar Telescope at Hida observatory, and compared the Doppler velocities, derived from the shift of the peak of the spectral lines presumably emitted from optically-thin plasma. There are instances when the difference in velocities between neutral atoms and ions is significant, e.g. 1433 events (~ 3 % of sets of compared profiles) with a difference in velocity between neutral hydrogen atoms and calcium ions greater than 3sigma of the measurement error. However, we also found significant differences between the Doppler velocities of two spectral lines emitted from the same species, and the probability density functions of velocity difference between the same species is not significantly different from those between neutral atoms and ions. We interpreted the difference of Doppler velocities as a result of motions of different components in the prominence along the line of sight, rather than the decoupling of neutral atoms from plasma.
The interstellar magnetic field (ISMF) near the heliosphere is a basic part of the solar neighborhood that can only be studied using polarized starlight. Results of an ongoing survey of polarized starlight are analyzed with the goal of linking the interstellar magnetic field that shapes the heliosphere to the nearby field in interstellar space. New results for the direction of the nearby ISMF, based on a merit function that utilizes polarization position angles, identify several magnetic components. The dominant interstellar field, B_pol, is aligned with the direction L,B= 36.2,49.0 (+/-16.0) degrees and is within 8 degrees of the IBEX Ribbon ISMF direction. Stars tracing B_pol have the same mean distance as stars that do not trace B_pol, but show weaker polarizations consistent with lower column densities of polarizing grains. The variations in the polarization position angle directions indicate a low level of magnetic turbulence. B_pol is found after excluding polarizations that trace a separate magnetic structure that apparently is due to interstellar dust deflected around the heliosphere. Local interstellar cloud velocities relative to the LSR increase with the angles between the LSR velocities and ISMF, indicating that the kinematics of local interstellar material is ordered by the ISMF. Polarization and color excess data are consistent with an extension of Loop I to the solar vicinity. Polarizations are consistent with previous findings of more efficient grain alignment in low column density sightlines. Optical polarization and color excess data indicate the presence of nearby interstellar dust in the BICEP2 field. Color excess E(B-V) indicates an optical extinction of A_V about 0.59 mag in the BICEP2 field, while the polarization data indicate that A_V is larger than 0.09 mag. The IBEX Ribbon ISMF extends to the boundaries of the BICEP2 region.
144 - I.-G. Shin , C. Han , J.-Y. Choi 2012
Despite astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of observational techniques for a complete view of stellar multiplicity across a broad range of physical parameters. In this paper, we report the detections and measurements of 2 binaries discovered from observations of microlensing events MOA-2011-BLG-090 and OGLE-2011-BLG-0417. Determinations of the binary masses are possible by simultaneously measuring the Einstein radius and the lens parallax. The measured masses of the binary components are 0.43 $M_{odot}$ and 0.39 $M_{odot}$ for MOA-2011-BLG-090 and 0.57 $M_{odot}$ and 0.17 $M_{odot}$ for OGLE-2011-BLG-0417 and thus both lens components of MOA-2011-BLG-090 and one component of OGLE-2011-BLG-0417 are M dwarfs, demonstrating the usefulness of microlensing in detecting binaries composed of low-mass components. From modeling of the light curves considering full Keplerian motion of the lens, we also measure the orbital parameters of the binaries. The blended light of OGLE-2011-BLG-0417 comes very likely from the lens itself, making it possible to check the microlensing orbital solution by follow-up radial-velocity observation. For both events, the caustic-crossing parts of the light curves, which are critical for determining the physical lens parameters, were resolved by high-cadence survey observations and thus it is expected that the number of microlensing binaries with measured physical parameters will increase in the future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا