No Arabic abstract
Electronic-structure theory is a strong pillar of materials science. Many different computer codes that employ different approaches are used by the community to solve various scientific problems. Still, the precision of different packages has only recently been scrutinized thoroughly, focusing on a specific task, namely selecting a popular density functional, and using unusually high, extremely precise numerical settings for investigating 71 monoatomic crystals. Little is known, however, about method- and code-specific uncertainties that arise under numerical settings that are commonly used in practice. We shed light on this issue by investigating the deviations in total and relative energies as a function of computational parameters. Using typical settings for basis sets and k-grids, we compare results for 71 elemental and 63 binary solids obtained by three different electronic-structure codes that employ fundamentally different strategies. On the basis of the observed trends, we propose a simple, analytical model for the estimation of the errors associated with the basis-set incompleteness. We cross-validate this model using ternary systems obtained from the NOMAD Repository and discuss how our approach enables the comparison of the heterogeneous data present in computational materials databases.
We describe extensions to the siesta density functional theory (dft) code [30], for the simulation of isolated molecules and their absorption spectra. The extensions allow for: - Use of a multi-grid solver for the Poisson equation on a finite dft mesh. Non-periodic, Dirichlet boundary conditions are computed by expansion of the electric multipoles over spherical harmonics. - Truncation of a molecular system by the method of design atom pseudo- potentials of Xiao and Zhang[32]. - Electrostatic potential fitting to determine effective atomic charges. - Derivation of electronic absorption transition energies and oscillator stren- gths from the raw spectra produced by a recently described, order O(N3), time-dependent dft code[21]. The code is furthermore integrated within siesta as a post-processing option.
In this short note, we present a new technique to accelerate the convergence of a FFT-based solver for numerical homogenization of complex periodic media proposed by Moulinec and Suquet in 1994. The approach proceeds from discretization of the governing integral equation by the trigonometric collocation method due to Vainikko (2000), to give a linear system which can be efficiently solved by conjugate gradient methods. Computational experiments confirm robustness of the algorithm with respect to its internal parameters and demonstrate significant increase of the convergence rate for problems with high-contrast coefficients at a low overhead per iteration.
In silico materials design is hampered by the computational complexity of Kohn-Sham DFT, which scales cubically with the system size. Owing to the development of new-generation kinetic energy density functionals (KEDFs), orbital-free DFT (OFDFT, a linear-scaling method) can now be successfully applied to a large class of semiconductors and such finite systems as quantum dots and metal clusters. In this work, we present DFTpy, an open source software implementing OFDFT written entirely in Python 3 and outsourcing the computationally expensive operations to third-party modules, such as NumPy and SciPy. When fast simulations are in order, DFTpy exploits the fast Fourier transforms (FFTs) from PyFFTW. New-generation, nonlocal and density-dependent-kernel KEDFs are made computationally efficient by employing linear splines and other methods for fast kernel builds. We showcase DFTpy by solving for the electronic structure of a million-atom system of aluminum metal which was computed on a single CPU. The Python 3 implementation is object-oriented, opening the door to easy implementation of new features. As an example, we present a time-dependent OFDFT implementation (hydrodynamic DFT) which we use to compute the spectra of small metal cluster recovering qualitatively the time-dependent Kohn-Sham DFT result. The Python code base allows for easy implementation of APIs. We showcase the combination of DFTpy and ASE for molecular dynamics simulations (NVT) of liquid metals. DFTpy is released under the MIT license.
The reliability of atomistic simulations depends on the quality of the underlying energy models providing the source of physical information, for instance for the calculation of migration barriers in atomistic Kinetic Monte Carlo simulations. Accurate (high-fidelity) methods are often available, but since they are usually computationally expensive, they must be replaced by less accurate (low-fidelity) models that introduce some degrees of approximation. Machine-learning techniques such as artificial neural networks are usually employed to work around this limitation and extract the needed parameters from large databases of high-fidelity data, but the latter are often computationally expensive to produce. This work introduces an alternative method based on the multifidelity approach, where correlations between high-fidelity and low-fidelity outputs are exploited to make an educated guess of the high-fidelity outcome based only on quick low-fidelity estimations, hence without the need of running full expensive high-fidelity calculations. With respect to neural networks, this approach is expected to require less training data because of the lower amount of fitting parameters involved. The method is tested on the prediction of ab initio formation and migration energies of vacancy diffusion in iron-copper alloys, and compared with the neural networks trained on the same database.
Exciting advances have been made in artificial intelligence (AI) during the past decades. Among them, applications of machine learning (ML) and deep learning techniques brought human-competitive performances in various tasks of fields, including image recognition, speech recognition and natural language understanding. Even in Go, the ancient game of profound complexity, the AI player already beat human world champions convincingly with and without learning from human. In this work, we show that our unsupervised machines (Atom2Vec) can learn the basic properties of atoms by themselves from the extensive database of known compounds and materials. These learned properties are represented in terms of high dimensional vectors, and clustering of atoms in vector space classifies them into meaningful groups in consistent with human knowledge. We use the atom vectors as basic input units for neural networks and other ML models designed and trained to predict materials properties, which demonstrate significant accuracy.