Do you want to publish a course? Click here

Contrastive learning, multi-view redundancy, and linear models

78   0   0.0 ( 0 )
 Added by Daniel Hsu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Self-supervised learning is an empirically successful approach to unsupervised learning based on creating artificial supervised learning problems. A popular self-supervised approach to representation learning is contrastive learning, which leverages naturally occurring pairs of similar and dissimilar data points, or multiple views of the same data. This work provides a theoretical analysis of contrastive learning in the multi-view setting, where two views of each datum are available. The main result is that linear functions of the learned representations are nearly optimal on downstream prediction tasks whenever the two views provide redundant information about the label.

rate research

Read More

Multi-view network embedding aims at projecting nodes in the network to low-dimensional vectors, while preserving their multiple relations and attribute information. Contrastive learning-based methods have preliminarily shown promising performance in this task. However, most contrastive learning-based methods mostly rely on high-quality graph embedding and explore less on the relationships between different graph views. To deal with these deficiencies, we design a novel node-to-node Contrastive learning framework for Multi-view network Embedding (CREME), which mainly contains two contrastive objectives: Multi-view fusion InfoMax and Inter-view InfoMin. The former objective distills information from embeddings generated from different graph views, while the latter distinguishes different graph views better to capture the complementary information between them. Specifically, we first apply a view encoder to generate each graph view representation and utilize a multi-view aggregator to fuse these representations. Then, we unify the two contrastive objectives into one learning objective for training. Extensive experiments on three real-world datasets show that CREME outperforms existing methods consistently.
Multi-typed objects Multi-view Multi-instance Multi-label Learning (M4L) deals with interconnected multi-typed objects (or bags) that are made of diverse instances, represented with heterogeneous feature views and annotated with a set of non-exclusive but semantically related labels. M4L is more general and powerful than the typical Multi-view Multi-instance Multi-label Learning (M3L), which only accommodates single-typed bags and lacks the power to jointly model the naturally interconnected multi-typed objects in the physical world. To combat with this novel and challenging learning task, we develop a joint matrix factorization based solution (M4L-JMF). Particularly, M4L-JMF firstly encodes the diverse attributes and multiple inter(intra)-associations among multi-typed bags into respective data matrices, and then jointly factorizes these matrices into low-rank ones to explore the composite latent representation of each bag and its instances (if any). In addition, it incorporates a dispatch and aggregation term to distribute the labels of bags to individual instances and reversely aggregate the labels of instances to their affiliated bags in a coherent manner. Experimental results on benchmark datasets show that M4L-JMF achieves significantly better results than simple adaptions of existing M3L solutions on this novel problem.
105 - Xuli Sun , Shiliang Sun 2020
Recent work has highlighted the vulnerability of many deep machine learning models to adversarial examples. It attracts increasing attention to adversarial attacks, which can be used to evaluate the security and robustness of models before they are deployed. However, to our best knowledge, there is no specific research on the adversarial attacks for multi-view deep models. This paper proposes two multi-view attack strategies, two-stage attack (TSA) and end-to-end attack (ETEA). With the mild assumption that the single-view model on which the target multi-view model is based is known, we first propose the TSA strategy. The main idea of TSA is to attack the multi-view model with adversarial examples generated by attacking the associated single-view model, by which state-of-the-art single-view attack methods are directly extended to the multi-view scenario. Then we further propose the ETEA strategy when the multi-view model is provided publicly. The ETEA is applied to accomplish direct attacks on the target multi-view model, where we develop three effective multi-view attack methods. Finally, based on the fact that adversarial examples generalize well among different models, this paper takes the adversarial attack on the multi-view convolutional neural network as an example to validate that the effectiveness of the proposed multi-view attacks. Extensive experimental results demonstrate that our multi-view attack strategies are capable of attacking the multi-view deep models, and we additionally find that multi-view models are more robust than single-view models.
Drug-drug interaction(DDI) prediction is an important task in the medical health machine learning community. This study presents a new method, multi-view graph contrastive representation learning for drug-drug interaction prediction, MIRACLE for brevity, to capture inter-view molecule structure and intra-view interactions between molecules simultaneously. MIRACLE treats a DDI network as a multi-view graph where each node in the interaction graph itself is a drug molecular graph instance. We use GCNs and bond-aware attentive message passing networks to encode DDI relationships and drug molecular graphs in the MIRACLE learning stage, respectively. Also, we propose a novel unsupervised contrastive learning component to balance and integrate the multi-view information. Comprehensive experiments on multiple real datasets show that MIRACLE outperforms the state-of-the-art DDI prediction models consistently.
A prominent technique for self-supervised representation learning has been to contrast semantically similar and dissimilar pairs of samples. Without access to labels, dissimilar (negative) points are typically taken to be randomly sampled datapoints, implicitly accepting that these points may, in reality, actually have the same label. Perhaps unsurprisingly, we observe that sampling negative examples from truly different labels improves performance, in a synthetic setting where labels are available. Motivated by this observation, we develop a debiased contrastive objective that corrects for the sampling of same-label datapoints, even without knowledge of the true labels. Empirically, the proposed objective consistently outperforms the state-of-the-art for representation learning in vision, language, and reinforcement learning benchmarks. Theoretically, we establish generalization bounds for the downstream classification task.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا