Do you want to publish a course? Click here

Computing Reeb dynamics on 4d convex polytopes

72   0   0.0 ( 0 )
 Added by Julian Chaidez
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study the combinatorial Reeb flow on the boundary of a four-dimensional convex polytope. We establish a correspondence between combinatorial Reeb orbits for a polytope, and ordinary Reeb orbits for a smoothing of the polytope, respecting action and Conley-Zehnder index. One can then use a computer to find all combinatorial Reeb orbits up to a given action and Conley-Zehnder index. We present some results of experiments testing Viterbos conjecture and related conjectures. In particular, we have found some new examples of polytopes with systolic ratio $1$.



rate research

Read More

We show that a nondegenerate tight contact form on the 3-sphere has exactly two simple closed Reeb orbits if and only if the differential in linearized contact homology vanishes. Moreover, in this case the Floquet multipliers and Conley-Zehnder indices of the two Reeb orbits agree with those of a suitable irrational ellipsoid in 4-space.
150 - Baptiste Chantraine 2021
In this short note we observe that the boundary of a properly embedded compact exact Lagrangian sub-manifolds in a subcritical Weinstein domain $X$ necessarily admits Reeb chords. The existence of this Reeb chords either follows from an obstruction to the deformation of the boundary to a cylinder over a Legendrian sub-manifold or from the fact that the wrapped Floer homology of the Lagrangian vanishes once this boundary have been collared.
We relate the machinery of persistence modules to the Legendrian contact homology theory and to Poisson bracket invariants, and use it to show the existence of connecting trajectories of contact and symplectic Hamiltonian flows.
A classical result of Schubert calculus is an inductive description of Schubert cycles using divided difference (or push-pull) operators in Chow rings. We define convex geometric analogs of push-pull operators and describe their applications to the theory of Newton-Okounkov convex bodies. Convex geometric push-pull operators yield an inductive construction of Newton-Okounkov polytopes of Bott-Samelson varieties. In particular, we construct a Minkowski sum of Feigin-Fourier-Littelmann-Vinberg polytopes using convex geometric push-pull operators in type A.
356 - Boris Khesin 2011
We present the Hamiltonian formalism for the Euler equation of symplectic fluids, introduce symplectic vorticity, and study related invariants. In particular, this allows one to extend D.Ebins long-time existence result for geodesics on the symplectomorphism group to metrics not necessarily compatible with the symplectic structure. We also study the dynamics of symplectic point vortices, describe their symmetry groups and integrability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا