Do you want to publish a course? Click here

Kernel-based Graph Learning from Smooth Signals: A Functional Viewpoint

419   0   0.0 ( 0 )
 Added by Xingyue Pu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The problem of graph learning concerns the construction of an explicit topological structure revealing the relationship between nodes representing data entities, which plays an increasingly important role in the success of many graph-based representations and algorithms in the field of machine learning and graph signal processing. In this paper, we propose a novel graph learning framework that incorporates the node-side and observation-side information, and in particular the covariates that help to explain the dependency structures in graph signals. To this end, we consider graph signals as functions in the reproducing kernel Hilbert space associated with a Kronecker product kernel, and integrate functional learning with smoothness-promoting graph learning to learn a graph representing the relationship between nodes. The functional learning increases the robustness of graph learning against missing and incomplete information in the graph signals. In addition, we develop a novel graph-based regularisation method which, when combined with the Kronecker product kernel, enables our model to capture both the dependency explained by the graph and the dependency due to graph signals observed under different but related circumstances, e.g. different points in time. The latter means the graph signals are free from the i.i.d. assumptions required by the classical graph learning models. Experiments on both synthetic and real-world data show that our methods outperform the state-of-the-art models in learning a meaningful graph topology from graph signals, in particular under heavy noise, missing values, and multiple dependency.



rate research

Read More

A number of applications in engineering, social sciences, physics, and biology involve inference over networks. In this context, graph signals are widely encountered as descriptors of vertex attributes or features in graph-structured data. Estimating such signals in all vertices given noisy observations of their values on a subset of vertices has been extensively analyzed in the literature of signal processing on graphs (SPoG). This paper advocates kernel regression as a framework generalizing popular SPoG modeling and reconstruction and expanding their capabilities. Formulating signal reconstruction as a regression task on reproducing kernel Hilbert spaces of graph signals permeates benefits from statistical learning, offers fresh insights, and allows for estimators to leverage richer forms of prior information than existing alternatives. A number of SPoG notions such as bandlimitedness, graph filters, and the graph Fourier transform are naturally accommodated in the kernel framework. Additionally, this paper capitalizes on the so-called representer theorem to devise simpl
Real-world data is often times associated with irregular structures that can analytically be represented as graphs. Having access to this graph, which is sometimes trivially evident from domain knowledge, provides a better representation of the data and facilitates various information processing tasks. However, in cases where the underlying graph is unavailable, it needs to be learned from the data itself for data representation, data processing and inference purposes. Existing literature on learning graphs from data has mostly considered arbitrary graphs, whereas the graphs generating real-world data tend to have additional structure that can be incorporated in the graph learning procedure. Structure-aware graph learning methods require learning fewer parameters and have the potential to reduce computational, memory and sample complexities. In light of this, the focus of this paper is to devise a method to learn structured graphs from data that are given in the form of product graphs. Product graphs arise naturally in many real-world datasets and provide an efficient and compact representation of large-scale graphs through several smaller factor graphs. To this end, first the graph learning problem is posed as a linear program, which (on average) outperforms the state-of-the-art graph learning algorithms. This formulation is of independent interest itself as it shows that graph learning is possible through a simple linear program. Afterwards, an alternating minimization-based algorithm aimed at learning various types of product graphs is proposed, and local convergence guarantees to the true solution are established for this algorithm. Finally the performance gains, reduced sample complexity, and inference capabilities of the proposed algorithm over existing methods are also validated through numerical simulations on synthetic and real datasets.
We propose a novel graph clustering method guided by additional information on the underlying structure of the clusters (or communities). The problem is formulated as the matching of a graph to a template with smaller dimension, hence matching $n$ vertices of the observed graph (to be clustered) to the $k$ vertices of a template graph, using its edges as support information, and relaxed on the set of orthonormal matrices in order to find a $k$ dimensional embedding. With relevant priors that encode the density of the clusters and their relationships, our method outperforms classical methods, especially for challenging cases.
This paper introduces a novel graph signal processing framework for building graph-based models from classes of filtered signals. In our framework, graph-based modeling is formulated as a graph system identification problem, where the goal is to learn a weighted graph (a graph Laplacian matrix) and a graph-based filter (a function of graph Laplacian matrices). In order to solve the proposed problem, an algorithm is developed to jointly identify a graph and a graph-based filter (GBF) from multiple signal/data observations. Our algorithm is valid under the assumption that GBFs are one-to-one functions. The proposed approach can be applied to learn diffusion (heat) kernels, which are popular in various fields for modeling diffusion processes. In addition, for specific choices of graph-based filters, the proposed problem reduces to a graph Laplacian estimation problem. Our experimental results demonstrate that the proposed algorithm outperforms the current state-of-the-art methods. We also implement our framework on a real climate dataset for modeling of temperature signals.
We introduce a family of multilayer graph kernels and establish new links between graph convolutional neural networks and kernel methods. Our approach generalizes convolutional kernel networks to graph-structured data, by representing graphs as a sequence of kernel feature maps, where each node carries information about local graph substructures. On the one hand, the kernel point of view offers an unsupervised, expressive, and easy-to-regularize data representation, which is useful when limited samples are available. On the other hand, our model can also be trained end-to-end on large-scale data, leading to new types of graph convolutional neural networks. We show that our method achieves competitive performance on several graph classification benchmarks, while offering simple model interpretation. Our code is freely available at https://github.com/claying/GCKN.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا