Special supernova signature from BH-NS/BH progenitor systems


Abstract in English

The gravitational-wave detection by the LIGO-Virgo scientific collaboration shows that the black hole and neutron star (BH-NS) or BH-BH systems with a BH mass of tens of solar masses widely exist in the universe. Two main types of scenarios have been invoked for the formation of BH-NS/BH systems, including isolated binary evolution in galactic fields and dynamical interactions in dense environments. Here we propose that if the BH-NS/BH systems are formed from isolated binary evolution, the supernova (SN) signal associated with the second core collapse would show some identifiable features, due to the accretion feedback from the companion BH. Depending on the binary properties, we show that the SN lightcurve could present a sharp peak around $sim10$ days, with luminosity even at the level of the super luminous SNe ( e.g. $sim10^{44}~rm erg~s^{-1}$) or present a plateau feature lasting for several tens of days with regular luminosity of core collapse SNe. Comparing the event rate density of these special SN signals with the event rate density of LIGO-Virgo detected BH-NS/BH systems could help to distinguish the BH-NS/BH formation channel.

Download