In the ballistic regime, the transport across a normal metal (N)/superconductor (S) point-contact is dominated by a quantum process called Andreev reflection. Andreev reflection causes an enhancement of the conductance below the superconducting energy gap, and the ratio of the low-bias and the high-bias conductance cannot be greater than 2 when the superconductor is conventional in nature. In this regime, the features associated with Andreev reflection also provide energy and momentum-resolved spectroscopic information about the superconducting phase. Here we theoretically consider various types of N/S point contacts, away from the ballistic regime, and show that even when the superconductor under investigation is simple conventional in nature, depending on the shape, size and anatomy of the point contacts, a wide variety of spectral features may appear in the conductance spectra. Such features may misleadingly mimic theoretically expected signatures of exotic physical phenomena like Klein tunneling in topological superconductors, Andreev bound states in unconventional superconductors, multiband superconductivity and Majorana zero modes.