Do you want to publish a course? Click here

Applications of BERT Based Sequence Tagging Models on Chinese Medical Text Attributes Extraction

83   0   0.0 ( 0 )
 Added by Chenxiao Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We convert the Chinese medical text attributes extraction task into a sequence tagging or machine reading comprehension task. Based on BERT pre-trained models, we have not only tried the widely used LSTM-CRF sequence tagging model, but also other sequence models, such as CNN, UCNN, WaveNet, SelfAttention, etc, which reaches similar performance as LSTM+CRF. This sheds a light on the traditional sequence tagging models. Since the aspect of emphasis for different sequence tagging models varies substantially, ensembling these models adds diversity to the final system. By doing so, our system achieves good performance on the task of Chinese medical text attributes extraction (subtask 2 of CCKS 2019 task 1).



rate research

Read More

In this paper, we present a novel approach for medical synonym extraction. We aim to integrate the term embedding with the medical domain knowledge for healthcare applications. One advantage of our method is that it is very scalable. Experiments on a dataset with more than 1M term pairs show that the proposed approach outperforms the baseline approaches by a large margin.
Leveraging large amounts of unlabeled data using Transformer-like architectures, like BERT, has gained popularity in recent times owing to their effectiveness in learning general representations that can then be further fine-tuned for downstream tasks to much success. However, training these models can be costly both from an economic and environmental standpoint. In this work, we investigate how to effectively use unlabeled data: by exploring the task-specific semi-supervised approach, Cross-View Training (CVT) and comparing it with task-agnostic BERT in multiple settings that include domain and task relevant English data. CVT uses a much lighter model architecture and we show that it achieves similar performance to BERT on a set of sequence tagging tasks, with lesser financial and environmental impact.
Modern text classification models are susceptible to adversarial examples, perturb
With the COVID-19 pandemic, there is a growing urgency for medical community to keep up with the accelerating growth in the new coronavirus-related literature. As a result, the COVID-19 Open Research Dataset Challenge has released a corpus of scholarly articles and is calling for machine learning approaches to help bridging the gap between the researchers and the rapidly growing publications. Here, we take advantage of the recent advances in pre-trained NLP models, BERT and OpenAI GPT-2, to solve this challenge by performing text summarization on this dataset. We evaluate the results using ROUGE scores and visual inspection. Our model provides abstractive and comprehensive information based on keywords extracted from the original articles. Our work can help the the medical community, by providing succinct summaries of articles for which the abstract are not already available.
Contextualized representations give significantly improved results for a wide range of NLP tasks. Much work has been dedicated to analyzing the features captured by representative models such as BERT. Existing work finds that syntactic, semantic and word sense knowledge are encoded in BERT. However, little work has investigated word features for character-based languages such as Chinese. We investigate Chinese BERT using both attention weight distribution statistics and probing tasks, finding that (1) word information is captured by BERT; (2) word-level features are mostly in the middle representation layers; (3) downstream tasks make different use of word features in BERT, with POS tagging and chunking relying the most on word features, and natural language inference relying the least on such features.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا