No Arabic abstract
At I/ITSEC 2019, the authors presented a fully-automated workflow to segment 3D photogrammetric point-clouds/meshes and extract object information, including individual tree locations and ground materials (Chen et al., 2019). The ultimate goal is to create realistic virtual environments and provide the necessary information for simulation. We tested the generalizability of the previously proposed framework using a database created under the U.S. Armys One World Terrain (OWT) project with a variety of landscapes (i.e., various buildings styles, types of vegetation, and urban density) and different data qualities (i.e., flight altitudes and overlap between images). Although the database is considerably larger than existing databases, it remains unknown whether deep-learning algorithms have truly achieved their full potential in terms of accuracy, as sizable data sets for training and validation are currently lacking. Obtaining large annotated 3D point-cloud databases is time-consuming and labor-intensive, not only from a data annotation perspective in which the data must be manually labeled by well-trained personnel, but also from a raw data collection and processing perspective. Furthermore, it is generally difficult for segmentation models to differentiate objects, such as buildings and tree masses, and these types of scenarios do not always exist in the collected data set. Thus, the objective of this study is to investigate using synthetic photogrammetric data to substitute real-world data in training deep-learning algorithms. We have investigated methods for generating synthetic UAV-based photogrammetric data to provide a sufficiently sized database for training a deep-learning algorithm with the ability to enlarge the data size for scenarios in which deep-learning models have difficulties.
With state-of-the-art sensing and photogrammetric techniques, Microsoft Bing Maps team has created over 125 highly detailed 3D cities from 11 different countries that cover hundreds of thousands of square kilometer areas. The 3D city models were created using the photogrammetric technique with high-resolution images that were captured from aircraft-mounted cameras. Such a large 3D city database has caught the attention of the US Army for creating virtual simulation environments to support military operations. However, the 3D city models do not have semantic information such as buildings, vegetation, and ground and cannot allow sophisticated user-level and system-level interaction. At I/ITSEC 2019, the authors presented a fully automated data segmentation and object information extraction framework for creating simulation terrain using UAV-based photogrammetric data. This paper discusses the next steps in extending our designed data segmentation framework for segmenting 3D city data. In this study, the authors first investigated the strengths and limitations of the existing framework when applied to the Bing data. The main differences between UAV-based and aircraft-based photogrammetric data are highlighted. The data quality issues in the aircraft-based photogrammetric data, which can negatively affect the segmentation performance, are identified. Based on the findings, a workflow was designed specifically for segmenting Bing data while considering its characteristics. In addition, since the ultimate goal is to combine the use of both small unmanned aerial vehicle (UAV) collected data and the Bing data in a virtual simulation environment, data from these two sources needed to be aligned and registered together. To this end, the authors also proposed a data registration workflow that utilized the traditional iterative closest point (ICP) with the extracted semantic information.
In this paper we propose an approach to perform semantic segmentation of 3D point cloud data by importing the geographic information from a 2D GIS layer (OpenStreetMap). The proposed automatic procedure identifies meaningful units such as buildings and adjusts their locations to achieve best fit between the GIS polygonal perimeters and the point cloud. Our processing pipeline is presented and illustrated by segmenting point cloud data of Trinity College Dublin (Ireland) campus constructed from optical imagery collected by a drone.
We propose an approach to instance segmentation from 3D point clouds based on dynamic convolution. This enables it to adapt, at inference, to varying feature and object scales. Doing so avoids some pitfalls of bottom up approaches, including a dependence on hyper-parameter tuning and heuristic post-processing pipelines to compensate for the inevitable variability in object sizes, even within a single scene. The representation capability of the network is greatly improved by gathering homogeneous points that have identical semantic categories and close votes for the geometric centroids. Instances are then decoded via several simple convolution layers, where the parameters are generated conditioned on the input. The proposed approach is proposal-free, and instead exploits a convolution process that adapts to the spatial and semantic characteristics of each instance. A light-weight transformer, built on the bottleneck layer, allows the model to capture long-range dependencies, with limited computational overhead. The result is a simple, efficient, and robust approach that yields strong performance on various datasets: ScanNetV2, S3DIS, and PartNet. The consistent improvements on both voxel- and point-based architectures imply the effectiveness of the proposed method. Code is available at: https://git.io/DyCo3D
With the growing interest in deep learning algorithms and computational design in the architectural field, the need for large, accessible and diverse architectural datasets increases. We decided to tackle this problem by constructing a field-specific synthetic data generation pipeline that generates an arbitrary amount of 3D data along with the associated 2D and 3D annotations. The variety of annotations, the flexibility to customize the generated building and dataset parameters make this framework suitable for multiple deep learning tasks, including geometric deep learning that requires direct 3D supervision. Creating our building data generation pipeline we leveraged architectural knowledge from experts in order to construct a framework that would be modular, extendable and would provide a sufficient amount of class-balanced data samples. Moreover, we purposefully involve the researcher in the dataset customization allowing the introduction of additional building components, material textures, building classes, number and type of annotations as well as the number of views per 3D model sample. In this way, the framework would satisfy different research requirements and would be adaptable to a large variety of tasks. All code and data are made publicly available.
Arguably one of the top success stories of deep learning is transfer learning. The finding that pre-training a network on a rich source set (eg., ImageNet) can help boost performance once fine-tuned on a usually much smaller target set, has been instrumental to many applications in language and vision. Yet, very little is known about its usefulness in 3D point cloud understanding. We see this as an opportunity considering the effort required for annotating data in 3D. In this work, we aim at facilitating research on 3D representation learning. Different from previous works, we focus on high-level scene understanding tasks. To this end, we select a suite of diverse datasets and tasks to measure the effect of unsupervised pre-training on a large source set of 3D scenes. Our findings are extremely encouraging: using a unified triplet of architecture, source dataset, and contrastive loss for pre-training, we achieve improvement over recent best results in segmentation and detection across 6 different benchmarks for indoor and outdoor, real and synthetic datasets -- demonstrating that the learned representation can generalize across domains. Furthermore, the improvement was similar to supervised pre-training, suggesting that future efforts should favor scaling data collection over more detailed annotation. We hope these findings will encourage more research on unsupervised pretext task design for 3D deep learning.