The Moduli Space of Marked Generalized Cusps in Real Projective Manifolds


Abstract in English

In this paper, a generalized cusp is a properly convex manifold with strictly convex boundary that is diffeomorphic to $M times [0, infty)$ where $M$ is a closed Euclidean manifold. These are classified in [2]. The marked moduli space is homeomorphic to a subspace of the space of conjugacy classes of representations of $pi_1(M)$. It has one description as a generalization of a trace-variety, and another description involving weight data that is similar to that used to describe semi-simple Lie groups. It is also a bundle over the space of Euclidean similarity (conformally flat) structures on $M$, and the fiber is a closed cone in the space of cubic differentials. For 3-dimensional orientable generalized cusps, the fiber is homeomorphic to a cone on a solid torus.

Download